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Abstract
We consider the problem of inferring a latent func-
tion in a probabilistic model of data. When depen-
dencies of the latent function are specified by a
Gaussian process and the data likelihood is com-
plex, efficient computation often involve Markov
chain Monte Carlo sampling with limited applica-
bility to large data sets. We extend some of these
techniques to scale efficiently when the problem
exhibits a sequential structure. We propose an
approximation that enables sequential sampling
of both latent variables and associated parameters.
We demonstrate strong performance in growing-
data settings that would otherwise be unfeasible
with naive, non-sequential sampling.

1. Introduction
Gaussian processes (GP) are extensively used by the ma-
chine learning community as a flexible framework for non-
parametric modelling (Rasmussen & Williams, 2006). They
offer a probabilistic approach to infer and predict depen-
dencies in data. Here we concentrate on their use in latent
variable models, where an unobservable function is gen-
erative of data through a possibly complex and non-linear
likelihood.

These models give rise to inversion problems. The reader
can think of the latent quantity as a non-observable input-
function to a physical system, from which one have noisy
measurements of the output. The measurements relate to
each other in a way prescribed by the latent function and
the system, and the problem is to “inversely” find a function
that best explains observed data.

In a probabilistic framework, the aim is to infer a distri-
bution over the latent function, and not just a single “best”
point-estimate. This acknowledges a notion of uncertainty
attached to the estimate, which stems from availability and
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noisiness of data, and the interplay of the latent function
with the system itself. Here the GP acts as a nonparamet-
ric model which encodes prior beliefs and domain knowl-
edge about the latent function. The system’s input-to-output
mapping is formalised in a likelihood model, which also
specifies a noise distribution. Together with a prior over
the model’s hyperparameters, the GP and likelihood of ob-
served data then induces a posterior distribution over the
latent function. These type of models are considered within
system biology (Barenco et al., 2006), geostatistics (Rue
et al., 2009), and robot kinematics (Williams et al., 2009),
to mention just but a few examples.

Inference on the posterior of latent variable models is, how-
ever, generally intractable. The case of Gaussian likelihoods
under known hyperparameters is a rare exception. For this
purpose, we build on Markov chain Monte Carlo (MCMC),
which approach inference with samples from the posterior.
Elliptical slice sampling (ESS) (Murray et al., 2010) pro-
vides a versatile method proved to be fast and efficient for
Gaussian latent variable models. While ESS updates latent
variables for a known (or fixed) covariance, the related and
equally applicable surrogate data slice sampling (SDSS)
(Murray & Adams, 2010) updates hyperparameters. In co-
operation they provide a MCMC strategy for full Bayesian
sampling inference.

These methods are limited by their scaling with data size
N . Exploitable structure and approximations aside (e.g.
(Saatchi, 2012) and (Quiñonero-Candela & Rasmussen,
2005)), the computational cost of decompositions for co-
variance proposals is O(N3), which becomes problematic
already when N approaches a few thousand.

To the best of our knowledge, there is not much previous
work that addresses the issue of computational complexity
within MCMC samplers for inference in latent GP models.
In this paper, we provide a strategy that aims to solve this
issue when the data generating process has a sequential
structure. We look at problems of data size TN , where N
is the observation size at each of T steps. We propose a
simple algorithm that makes sequential approximations of
the posterior with expectation propagation (Minka, 2001)
and use this as target distribution in a MCMC sampler. This
cuts the cost from O(T 3N3) for updating the full model
to O(Tτ3N3), for a tunable or user-specified constant τ .
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We then exploit the strengths of ESS and SDSS to obtain
a practical and fast MCMC sampler. We demonstrate the
benefits with empirical experiments based on two cases: one
standard benchmark and one complex likelihood model.

2. Sequential latent Gaussian process models
We consider Bayesian inference for probabilistic models of
observable data y ∈ Rn. We assume a given conditional
likelihood which represents the data-generating process,
y ∼ p(y|f , α), where a latent variable f ∈ RN is the main
object of interest for inference. As an example, one can
have in mind a system where f is an unobservable input
and y noisy measurements of the output y = Φ(f) + ε.
Parameters associated with the likelihood—with the system
Φ and noise distribution p(ε)—are collected in α.

In this work, the latent variable is assumed to have a func-
tional prior f(x) ∼ GP(0, kκ(x, x′)) with input space
x ∈ RD. Let N (z|m,K) denote a Gaussian density with
mean m and covariance matrix K. By definition, the GP
induces a prior f ∼ p(f |κ) = N (f |0,Kκ). Kκ is the
Gram matrix constructed by the covariance kernel with pa-
rameters κ: [Kκ]i,j = kκ(xi, xj) for all pairs xi, xj of
the input set x ∈ RN×D corresponding to f . A mean
vector mm can be absorbed into the likelihood function
p(y|f , α) ≡ p(y|f + mm, α), where parameters m are in-
cluded in α for convenience.

Sequential data model Consider now the data to be a se-
quence of observations y = {yt}Tt=1 with corresponding
f = {ft}Tt=1, where the yt ∈ Rn are assumed condition-
ally independent given ft ∈ RN . The likelihood then fac-
torises over t (but not necessarily over the elements of yt):
p(y1:T |f1:T , α) =

∏T
t=1 p(yt|ft, α) where we use a short-

hand notation y1:T ≡ {yt}Tt=1. Similarly for the system
example, the noisy output yt observed at t would depend on
ft only, with the noise being independent across t as well.

In this setting, the temporal dependence in data is induced by
the dependency structure of the latent GP. This is modelled
by augmenting the input space with t ∈ N and we assume a
covariance kernel that is separable and isotropic in t

kκ(t, x; t′, x′) = k(t)κ (|t− t′|) k(x)κ (x, x′). (1)

Thus, the covariance matrix Kκ of f1:T is the Gram matrix
over all (t, x)-inputs in x1:T ≡ {xt}Tt=1, where xt denotes
the set of spatial inputs belonging to ft.

Remark The sampling algorithms we propose in this work
are not restricted to Gaussian process models. The neces-
sary assumption is f ∼ N (f |0,Kκ) with a parametrised
covariance. Similarly, the isotropic form (1) is not strictly
necessary, although we consider it a natural assumption for
sequential/temporal data. Alternatively, one may consider
non-stationary covariances, such as periodic kernels. The

implication for our work would be that one has to make
more informed choices when dropping data in (5). With-
out loss of generality, we therefore take as assumed a GP
with kernel (1) when developing our sampling strategy and,
accordingly, when designing numerical experiments.

2.1. Naive sequential sampling

Posterior inference on f and hyperparameters (κ, α) is gen-
erally difficult. The likelihood of y may depend on f in
a nonlinear way. In such cases, marginalisation of f is
intractable, and inference relies on approximating the poste-
rior distribution p(f , κ, α|y) = 1

Z p(y|f , α)p(f |κ)ph(κ, α)
where ph(κ, α) is a hyperprior and Z a normalising con-
stant.

Efficient MCMC methods for sampling from the posterior
for known or fixed (κ, α) are proposed in (Murray et al.,
2010). The hyperparameters may be inferred using tech-
niques proposed in (Murray & Adams, 2010). We will
leverage these methods—ESS and SDSS—but consider a
situation where sampling the full f is better avoided; ei-
ther because of computational complexity or because the
data arrives in a sequential manner. We use blocked Gibbs
sampling (Geman & Geman, 1984) and alternate between
updating latent variables conditional on hyperparameters,
and hyperparameters conditional on latent values.

To this end, assume we have observed data
y1 and generated an initial sample S1 =

{(f (1)1 , κ(1), α(1)), . . . , (f
(M)
1 , κ(M), α(M))} where

(f
(i)
1 , κ(i), α(i)) is the ith generated state of the Markov

chain targeting the posterior p(f1, κ, α|y1)—see end
of Section 2.4. For the subsequent data y2, a standard
approach is to target the joint posterior

p(f1:2, κ, α|y1:2) =
1

Z
p(y2|f2, α)p(f2|f1, κ)p(f1, κ, α|y1)

(2)
by blocked Gibbs sampling: When iterating over i ∈
{1, . . . ,M}, the state f

(i)
2 is first generated conditioned on

(f
(i)
1 , κ(i), α(i)) by targeting its conditional1

∝ p(y2|f2, α(i))p(f2|f (i)1 , κ(i)).

Second, (κ(i), α(i)) is updated conditioned on (f
(i)
2 , f

(i)
1 ) by

targeting its corresponding conditional, which includes ev-
ery factor of (2). Third, the state f1 should also be revisited
in an update conditional on (f

(i)
2 , κ(i), α(i)). In proceeding

steps t = 3, . . . , T we continue to “build up” and update
the latent states while hyperparameter updates target the

1Here we mean f
(i)
2 ∼ p(f2|f (i)1 , κ(i), α(i),y1:2) =

1
Z
p(y2|f2, α(i))p(f2|f (i)1 , κ(i))p(f

(i)
1 , κ(i), α(i)|y1), i.e., we ig-

nore writing out the normalising constant and all irrelevant terms
not depending on f2.
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posterior over the growing sequence f1:t for each t

∝ p(yt|ft, α)p(ft|f1:t−1, κ)p(f1:t−1, κ, α|y1:t−1). (3)

The overall complexity of this procedure is O(T 3N3),
which quickly becomes prohibitive.

2.2. Sequentially approximating the posterior

In sequential data settings where, for example, data is col-
lected daily, our interest is often sequential as well. When
this is the case, computation is saved by sampling only the
most recent ft from

∝ p(yt|ft, α)p(ft|f1:t−1, κ), (4)

i.e., ignoring updating previous fs for s < t. The com-
putational cost of the predictive prior in (4) grows with t
(cubed). If ft has strongest prior dependency with its most
recent neighbours (as for isotropic kernels (1) with respect
to t), variables separated in time may be dropped in order to
limit temporal dependency to the τ ≥ 1 most recent steps.
The approximate predictive distribution is then

p(ft|f1:t−1, κ) ≈ p(ft|ft−τ :t−1, κ) (5)

with a cost-cap of τ . This naive form of data selection has
the purpose of limiting the size of f1:t−1 from growing with
t when evaluating the prior. τ can be set using domain
knowledge or by tuning trade-off between computation and
accuracy. For sophisticated approaches to selecting which
latent variables to include in the predictive distribution, e.g.,
in the case of non-isotropic kernels, see (Osborne, 2010).

Sampling ft is straightforward in the sequential procedure;
the computationally problematic term in (3) is the posterior
from the previous time step. To circumvent the difficulties
of parameter sampling, we approximate it by a factorised
version

p(f1:t−1, κ, α|y1:t−1) ≈ qt−1(f1:t−1)qt−1(κ, α) (6)

which is substituted into (3). The sampling target for ft is
unchanged, but the approximation yields simple updates for
(κ, α) from ∝ p(yt|ft, α)p(ft|f1:t−1, κ)qt−1(κ, α). Note
that the approximate term qt−1(f1:t−1) factors out for both
updates. In effect, if qt−1(κ, α) is a tractable approximation
which can be updated in each t-step, the same basic sam-
pling method can be applied sequentially by combining (5)-
(6): (i) (ft, κ, α) ∼ p(yt|ft, α)p(ft|ft−τ :t−1, κ)qt−1(κ, α),
(ii) qt−1(κ, α) → qt(κ, α), (iii) p(ft|ft−τ :t−1, κ) →
p(ft+1|ft+1−τ :t, κ), using the priors ph(κ, α) and p(f1|κ)
for the initial t = 1. To make this scheme operational, we
next consider a specific choice of qt−1(κ, α).

2.3. Sequential approximation and hyperparameter
assumptions

Given the factorisation assumption (6), a number of methods
for estimating qt−1 are possible. We propose an approach

that seems natural given the problem constraints, based on
ideas from expectation propagation.

Consider minimizing the Kullback–Leibler divergence
KL(p(f1:t, κ, α|y1:t)||qt(κ, α)). The optimal solution is
q̂t(κ, α) =

∫
p(f1:t, κ, α|y1:t)df1:t = p(κ, α|y1:t), which

is intractable in general while for our purpose, we desire
a tractable representation. One such arises when (κ, α) is
specified as a deterministic transformations of a Gaussian
vector z (the next section gives an example): Assuming a
Gaussian approximating family, the optimal q̂t(z) is given
by N (mz,t,Kz,t) with

mz,t = Ep(z|y1:t)[z] and Kz,t = Ep(z|y1:t)[zz
′] (7)

i.e., by moment matching. This form for the parame-
ters allows for sequential updates to produce a sample
(z(1), . . . , z(M)), which can be used to re-estimate the mo-
ments (7). The approximation thus breaks the full tem-
poral dependence into a sequential dependence similar to
a Markov decomposition, and focuses computational re-
sources via MCMC on parts of the model with more com-
plex structure.

For the hyperprior, we consider a scaled sigmoid Gaussian
(SSG)

κ = κmin +
κmax − κmin

1 + exp(−z)
, z ∼ N (mz,Kz) , (8)

for covariance parameters, and similarly for α. We make
this choice for a couple of reasons: (i) it is convenient for
specifying the range of each parameter, κi ∈ (κmin,i, κmax,i),
as well as joint dependency and distributional shape with
mz, Kz, and (ii) as the parameter vector is effectively a
transformed Gaussian, we can leverage ESS when updat-
ing hyperparameters in the sampling scheme. For a non-
informative prior on may set mz = 0 and Kz = 1.52I while
domain knowledge can be used for setting κmax and αmax.
We can then take our posterior representation qt−1(κ, α) to
also be a SSG with mz and Kz updated from the previous
hyperparameter sample, i.e., moments estimated from the
posterior sample {α(1), κ(1), . . . , α(M), κ(M)}, generated
at t− 1.

2.4. Algorithm

At the backbone of our algorithm sits the elliptical slice
sampler—see Figure 2 of (Murray et al., 2010). For a
given t, we use it for sampling from our joint target (non-
normalised, approximative posterior)

π(ft, κ, α|yt) = p(yt|ft, α)p(ft|ft−τ :t−1, κ)qt−1(κ, α)
(9)

in three steps:

Update 1: the latent variable ft for fixed (κ, α, ft−τ :t−1)
with ESS. Here we have to compute only once the co-
variance matrix Kt,κ (square-root decomposition Kt,κ =
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Lt,κL
>
t,κ) and mean mt,κ of the conditional prior

ft|ft−τ :t−1 ∼ N (mt,κ,Kt,κ) using predictive equations for
Gaussian processes (Rasmussen & Williams, 2006). Since
κ is fixed, Kt,κ and mt,κ stay unchanged when applying
ESS so it is sensible to repeat this operation and update ft
several times.

Update 2: covariance parameters κ for fixed α. For this pur-
pose we represent the conditional prior of ft with a spherical
Gaussian

ft = Lt,κν + mt,κ, ν ∼ N (0, I) (10)

and generate κ for fixed ν with respect to p(yt|ft = Lt,κν+
mt,κ, α)qt−1(κ, α). Note that this will also update ft as a
bi-product. Due to the posterior representation of κ with a
sigmoid Gaussian, we perform this in z-space; again with
ESS targeting p(yt|ft(z), α)N (z;mz,Kz) where ft(z) =
Lt,κ=ssg(z)ν +mt,κ=ssg(z). Here κ = ssg(z) is the transfor-
mation given in (8).

Update 3: likelihood parameters α for fixed (κ, ft). As for
κ, this is done in the underlying Gaussian with ESS targeting
p(yt|ft, α = ssg(z))N (z;mz,Kz). Note that this update
does not involve the conditional prior of ft. Thus, it is
relatively cheap since it only requires likelihood evaluations.

Before stepping to the next t, it make sense to perform some
additional ESS-updates of ft, given updated parameters.
This may also be done in an intermediate update between
update 1 and update 2. Algorithm 1 summarises all steps:
to sample the full f1:T and hyperparameters, we apply the
above three updates for i = 1, . . . ,M in an inner loop
to obtain the sample St given St−1, and sequentially for
t = 2, . . . , T in an outer loop.

Initial sample When generating S1 it is worth investing in
a Markov chain with a large number of states to guarantee
a good representation of the initial posterior. Generated
variables and parameters are used for conditioning f2 and for
re-estimating the hyperposterior. Updates of the subsequent
S2 are therefore more efficient if the transient phase of the
first chain has been discarded as burn-in. One also benefits
from subsampling, since the size of S1 will fix M for all
subsequent samples.

As the strength of the unconditional prior over f1 is often
relatively weak to the likelihood, updating covariance pa-
rameters with a fixed-ν representation (10) is likely to mix
poorly. This is discussed in (Murray & Adams, 2010) who
propose the more efficient SDSS. Thus, it is advantageous to
use their method for sampling parameters at the first t = 1;
especially since we can adopt an ESS update (in z-space)
within SDSS under our hyperprior/posterior assumptions.
For subsequent t:s, however, we expect ft to have strong ties
with selected variables of f1:t−1. Therefore, we can indeed
expect to have an informative (conditional) prior, such that

Algorithm 1 Sequential sampling
Input: Initial sample S1 of size M . Output: Samples
S2, . . . ,ST .

1: for t = 2 to T do
2: Update: mz = mean(zt−1), Kz = cov(zt−1, zt−1)

with zt−1 = ssg−1((κ(1:M);α(1:M))) from St−1;
likelihood function p(yt|·) based on new data yt.

3: for i = 1 to M do
4: Initiate: f

(i)
t−1 from St−1; κ, α from most recent

updates.
5: Initial draw: f

(i)
t ∼ N (mt,κ,Kt,κ) with mt,κ,

Kt,κ calculated from κ and f
(i)
t−1.

6: Update 1: f (i)t ∼ ESS(f
(i)
t ;mt,κ,Kt,κ) ×1–10.

7: Update 2: κ(i), f (i)t ∼ ESS(κ;mz,Kz) with fixed
ν.

8: Repeat update 1.
9: Update 3: α(i) ∼ ESS(α;mz,Kz).

10: Repeat update 1.
11: end for
12: Save: St = {f (i)t , κ(i), α(i)}Mi=1

13: end for

a fixed-ν update is likely to be efficient. In doubt, one may
always apply SDSS for every time step.

3. Conceptual analysis
Detailed theoretical analysis of the sequential approxima-
tion is beyond the scope of this paper. Rigorous theoretical
theoretical treatment of MCMC sampling from an approxi-
mate posterior can be found in, e.g., Pillai & Smith (2014);
Johndrow et al. (2015); Johndrow & Mattingly (2017). Here
we examine our method from a high-level conceptual per-
spective.

The proposed method introduces an approximation of the
true posterior at each time step. By limiting the temporal
dependence between the current time step and previous time
steps, the method induces a smaller effective sample size for
performing inference at the current time step. As a result,
the variance of the approximate posterior will in general be
larger than that of the true posterior. Such an effect is seen in
the experiments, particularly in Figures 1 and 3. In practice,
restricting the influence of earlier time steps may have bene-
ficial effects, particularly if there is model mis-specification,
e.g., if the data are not stationary. Related ideas are explored
in broader context in Jacob et al. (2017). As we show below,
if the ratio of the approximate posterior variance to the true
posterior variance grows sub-quadratically in the number
of time steps, M , then the sequential approximation may
reduce overall error.
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Bias-variance trade-off The sequential algorithm pro-
posed in Section 2 introduces bias: At each t, the method
generates exact samples from an approximate posterior
distribution. Conversely, estimates made with those sam-
ples will exhibit smaller variance than an unbiased MCMC
method due to the larger number of samples generated by
the sequential approximation per unit of computation time.
In particular, let ϕ be some function of fT , κ, α, and sup-
pose we wish to compute Iϕ = Ep(fT ,κ,α|y1:T )[ϕ]. Let
ÎϕSGP(s) := 1

s

∑s
i=1 ϕ(f iT , κ

i, αi) denote the estimate of Iϕ

based on s independent samples from the sequential GP ap-
proximation, and likewise for ÎϕMCMC(s). The mean square
error (MSE) of ÎϕSGP(s) is

MSE(ÎϕSGP(s)) = E[(ÎϕSGP(s)− Iϕ)2]

= Var[ÎϕSGP(s)] + b2ϕ,T ,

where bϕ,T is the bias of the sequential approximation
after T time steps. For an unbiased MCMC method,
MSE(ÎϕMCMC(s)) = Var[ÎϕMCMC(s)]. Therefore, assuming
that Varp(fT ,κ,α|y1:T )[ϕ] = σ2

T < ∞ for the true posterior
and likewise σ2

SGP,T <∞ for the sequential approximation,

∆ := MSE(ÎϕMCMC(s))−MSE(ÎϕSGP(s))

=
σ2
T

s
−
σ2

SGP,T

s
− b2ϕ,T .

For a fixed amount of computation time, tc, ∆ may be ap-
proximated using the complexity of the sampling algorithms
(with C and C ′ capturing the hidden constants for MCMC
and sequential sampling, respectively),

∆ ≈ ∆̃ := σ2
T

CT 3N3

tc
− σ2

SGP,T
C ′Tτ3N3

tc
− b2ϕ,T .

As discussed above, the approximate posterior will in gen-
eral have higher variance than the true posterior; denote the
ratio of the two as RT := σ2

SGP,T /σ
2
T ≥ 1. Therefore, the

sequential approximation yields lower error than unbiased
MCMC if ∆̃ > 0; equivalently,

b2ϕ,T <
σ2
TTN

3

tc
(CT 2 − C ′RT τ3) . (11)

In order for the r.h.s. to be positive, RT < CT 2

C′τ3 . Exper-
iments indicate that RT is relatively stable for modest T
(see Figures 1 and 3); assuming positivity for large enough
T indicates that the sequential approximation will reduce
MSE if the bias grows at most as

√
T . The experiments in

Section 4 provide evidence that the approximation bias does
not grow quickly for the cases considered there.

4. Experiments
To demonstrate empirical performance of our approach, we
apply sequential sampling to a GP regression model on

synthetic data in the next section. For brevity, we omit
further standard applications, such as GP classification and
Cox-process inference. Instead we concentrate on a more
complicated financial model with a nonlinear likelihood
from an option pricing problem. Since our experiments are
of much larger scale than what is typically considered by the
literature (TN observations versus N ), we do not perform
a comparative study of methods, but concentrate on sample
result and their representativeness of the ground truth.

4.1. Gaussian Process regression for 3D inputs

We consider the Gaussian regression problem from (Murray
et al., 2010) as our starting point. For each t, data yt are
noisy observations of latent values ft taken at input locations
xt. We set up the data to have N = 200 observations for
each t, with inputs xt drawn uniformly over a unit square.
Latent values are generated from a GP prior with squared-
exponential kernel of parameters κ = (lx1

, lx2
, lt, σf ),

k(t, x; t′, x′) = σ2
f exp

(
−

2∑
d=1

(x(d) − x′(d))
2

2l2xd

− (t− t′)2

2l2t

)
.

We let σf = 1 and draw length-scales uniformly over
(0,
√

10). We set (µf , σy) = (0.5, .3) for the likeli-
hood p(yt|ft, α) = N (yt|ft + µf , σ

2
yI), and κmax =

(
√

10,
√

10,
√

10, 2) and αmax = (1, 1) for the hyperprior.
Finally, we generate the full data set with T = 20 steps of
t equally spaced over the unit interval. Each of y1:T , f1:T ,
x1:T , thus has TN = 4000 elements.

For t = 1, we generate 6000 states by the algorithm outlined
in Section 2.4 for the initial sample, with three f1 ∼ ESS
updates in the first update (running time < 4 minutes on a
2.8GHz quad-core Intel i7 processor). Note that we target
the exact posterior and therefore lt can not be inferred as
we see observed data for a singe t only. We discard the first
1000 states as burn-in and keep every 5th state to obtain a
thinned sample S1 of size M = 1000. We then continue
to generate samples S2,S3, . . . ,S20 sequentially from their
approximative posteriors: For each t, we generate St from
the target π(ft, κ, α|yt) in (9) based on the previous states
of St−1. We drop all but τ = 1 variable. In each iteration,
we repeat ft ∼ ESS × 5 in the first update, and another
five repetitions between the second and third update of the
parameters (total running time 35min).

Posterior representation Input #100–200 of Figure 1 rep-
resents the posterior over the initial latent variable f1 (µf
included) from S1. The sample captures the latent process
to a good extend: 85% of true values (blue stars) fall within
the ±2SD region. A credible interval for y1 is also calcu-
lated from the sample of f1 and σy (light grey). Comparing
to observed data (red dots) we see a good representation
with a few data points lying outside the interval (8 out of
200). Sequential samples over ft and credible intervals for
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Figure 1. Inputs 1–200 show S1 from the GP regression problem.
The posterior over f1 is represented by a±2SD region in dark grey.
Light grey is the ±2SD credible interval for corresponding data.
For clarity, the sample mean of f1 is subtracted from all values,
such that the posterior is centered around zero. Inputs 201–400
show corresponding results for S20.

yt yield similar results for each t as seen for S1. Plots
are not shown here for brevity, except for results from S20
shown as #201–400 in Figure 1. The samples exhibit a good
representation of the ground truth: all latent values fall in-
side the ±2SD posterior sample, and data observations fall
inside their ±2SD credible interval (9 out of 200).

Posterior prediction To further demonstrate the applica-
bility of our approach, we do a prediction experiment as
follows. Given samples up to and including St−1, we di-
vide the subsequent data into a training set yot and a test set
y?t of equal size.2 We sample fot from the target (9) with
likelihood given by yot . From each such sample f

o(i)
t , we

compute the predictive mean m
?(i)
t and covariance K

?(i)
t

of the test variables f?t |f
o(i)
t and represent their predictive

power by the predictive likelihood of y?t , based on m
?(i)
t

and K
?(i)
t . Denoting the corresponding log-likelihood value

ll?(i), we then look at how the accumulative mean of ll?(1:i)

varies with iteration i. This gives an idea of how predictive
power changes as an increasing number posterior samples
of fot are used; Figure 2 shows the result for t = 20.

For comparison, we repeat the experiment but with no pre-
vious information from St−1. That is, we use the “initial”

2This is simply done by assigning all input points of xt lying
in the half plane [0, 0.5]× [0, 1] to the training set, and remaining
points to the test set.
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Figure 2. GP regression. The predictive distribution f?20|f
o(i)
20 is

based on f
o(i)
20 sampled with the sequential approximation (solid

line), and from a single MCMC with no dependence on previous
time steps for t = 20 (dotted line), respectively. The higher
predictive log-likelihood of the sequential approximation indicates
that it captures statistical information from previous time steps.

sampling scheme based only on data yot , breaking all de-
pendence with earlier time steps. The resulting predictive
likelihood of y?t—shown in Figure 2 for t = 20—is now
weaker, indicating that the sequential approximation is cap-
turing information from previous time steps.

Comparison with full sampling For comparison, we use
the full, non-approximate MCMC method on a GP re-
gression model with N = 100 and T = 10. We sam-
ple the full model—non-sequentially, without posterior
approximations—with the initial sample method. We gen-
erate 6000 MCMC samples of f1:t for t = 1, . . . , 10; com-
putation time is 1 minute for f1 up to 11 hours for f10.
Similarly, we generate 6000 samples with sequential sam-
pling, which takes 3 minutes. The sub-sampled result is
illustrated in Figure 3. In qualitative terms, the main differ-
ence is that the overall variance decreases in t for the full
sampling method because it uses the full data set y1:t (up
to a certain point ∼ 300 inputs), while sequential sampling
has a constant, higher sample variance due to the approxi-
mations, which limit temporal dependence. Note also that
the seq. posterior does not deteriorate with t, indicating that
sequential approximation does not introduce a bias which
accumulates. Similarly it does not drift, such that the bias is
stable across the sequence.

4.2. Option pricing problem

As a second application of our approach, we consider in-
ferring a latent positive function σ(T,K, t) of an option
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Figure 3. Comparison of approximative-sequential sampling vs. sampling the full model.

pricing model (Dupire, 1994). For fixed t, the model is
represented by a mapping σ(·, t) 7→ C(·) where the price
function C(T,K) solves the PDE

∂C

∂T
+ rK

∂C

∂K
− K2σ2(T,K)

2

∂2C

∂K2
= 0 (12)

with boundary condition C(0,K) = (St −K)+. The func-
tion C(T,K) yields the time-t price of a call option with
maturity T and strike K on an underlying asset with current
price St.

The construction and calibration of σ from a set of observed
market prices at a single date t is a problem commonly
encountered in quantitative finance—see for instance the
discussion by (Luo & Liu, 2010). We consider it here as an
example of a challenging likelihood and inference problem
naturally placed in a sequential context. Given σt = σ(xt),
where xt is the set of (T,K)-inputs observed at t, we take
observed call prices ct to be generated with Gaussian noise

p(ct|σt) = N (ct;C(xt;σt), σ
2
c I).

Here, C(xt;σt) are model prices for each strike-maturity
in xt, calculated with σt. Further, we place a zero-mean GP
prior on f = {ft}Tt=1 and use the “softplus” function ζ(f) =
log(1 + exp(f)) to impose positiveness; σt = ζ(ft + µf ).
In effect, the likelihood factorises over time components
p(ct|ζ(ft + µf )). However, it does not factorise over the
components of ft, it is highly nonlinear (thus non-Gaussian)
and intractable—it can not even be evaluated with a closed-
form expression.3

3 Since no closed-form solution of (12) is known for a general
function σ, we follow standard procedure and use a numerical
Crank-Nicolson solver—see e.g. (Hirsa, 2012).

We generate data with T = 12 equidistant time steps and
N = 75 observations for each t from xt placed at a grid
of 15 strikes × 5 maturities. Each C(xt;σt) is computed
with σt from a draw f1:T of a GP with squared-exponential
kerned. We use (lT , lK , lt, σf ) = (0.5, 0.3, 0.5, 0.75) and
(µf , σc) = (−1.5, 0.05) for the likelihood. For the prior,
κmax = (1, 1, 1, 1) and αmax = (0.5, 0.5). We set an inter-
est rate r = 0 while the underlying price {St}Mt=1 is simu-
lated from a geometric Brownian motion with (S1, µ, σ) =
(1000, 0.04, 0.2).

Sequential sampling from the posterior is carried out in the
same manner as for the regression problem of Section 4.1.
We generate 20,000 states for t = 1 (running time 18min),
discard 10% as burn-in and subsample to obtain S1 of size
1000 before continuing with S2, . . . ,S12 (total time 24min).

Posterior representation For the last sequential step, left
Figure 4 shows the posterior sample of latent variables
σ12 = ζ(f12 + µf ). The posterior sample covers true latent
values to a satisfactory extent. We also see that the MAP
estimate of σ12 is close to true values. More interesting is
that the uncertainty in the posterior clearly varies over the
input space. This is a consequence of the non-linearity of
the likelihood, since the sensitivity of C with respect to σ
varies with maturity and strike (c.f. variability over latent
variables in Figure 1). In left (and right) Figure 4, inputs are
ordered in groups of five with common strike. Taking one
such group from the right hand side of the (left) plot where
strikes are low, the variability over σ is large. The reason
is that a low strikes gives a call option deep ‘in-the-money’,
such that its pay-off is relatively certain, and thereby its
price insensitive to σ. In effect, the likelihood is relatively
uninformative about σ in low-strike regions.

The corresponding posterior sample over option prices c12
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Figure 4. The inferred latent function σ12 = ζ(f12 + µf ) from
S12 for the option pricing problem. The posterior sample is shown
in grey, its MAP estimate with a solid grey line and true latent
values with blue circles.

is shown in right Figure 4 in log-scale. The non-linearity
effect of the pricing function is clearly manifested: even if
there is large uncertainty about σ for low strikes (left Figure
4, # Input > 40) there is little uncertainty over correspond-
ing prices (right Figure 4, # Input > 30, albeit the log-scale).
More interesting is the options around at-the-money, with
prices between the two horizontal lines (inputs ∼ 10–30).
These options are the most actively traded, and hence a good
fit of model to market prices is desirable. Taking the MAP-
estimate (the sample surface σ

(i)
12 which achieves largest

posterior likelihood) this is indeed the case: observed data
falls close to MAP prices in right Figure 4. Further, the
full posterior sample demonstrates how parameter uncer-
tainty—inherent in a model when estimated form data—is
distributed across strikes and maturities. This representation
of uncertainty is important, not the least as it should be taken
into account when the model is used for prediction. Finally,
we note that the results for t ∈ {1, . . . , 11} are very similar
in quality to those discussed in the above, but not shown for
brevity: the efficiency of our sequential sampling procedure
is consistent across t.

5. Conclusion and discussion
In this paper we have proposed a computationally efficient
sampling strategy that applies to Bayesian inference for GP-
based latent variable models with sequentially increasing
data. We proposed a practical approach based on a tactical
approximation that (i) breaks the joint posterior from the pre-
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Figure 5. Option pricing problem; t = 12 sample. The estimated
posterior of the model price is shown in logarithmic scale (grey
area), corresponding to the latent function shown in Figure 4.
Prices are plotted in groups of five maturities with common strike
(strike-price in descending order with # Input). Thick dashed lines
represents a posterior 95% credible interval for observable prices
(model price + noise) while red dots shows observed values used
for inference. The two horizontal lines indicates which options are
close to at-the-money.

viously sampled step into its marginals over latent variables
and parameters, (ii) represents this parameter marginal with
a transformed Gaussian to enable it being updated from its
the recent sample, and (iii) drops variable in the conditional
prior over latent variables. We demonstrated its benefits for
a standard GP regression model on synthetic data of size
that would be unpractical with standard sampling, and for
a complicated option-pricing model with highly nonlinear
likelihood. Both exampled showed strong performance of
our method with good posterior representation of the ground
truth. For the regression problem, we also shows that it is
comparable with full sampling.

Our sampling scheme will not produce outcomes from the
true posterior distribution as it targets the approximation
(9). This is the price we have to pay for computational
efficiency. The approximation will perform best when the
data are highly informative: p(f1:t|y1:t, κ, α) ≈ p(f1:t|y1:t)
and when there is an isotropic dependency structure over
time. In our examples, this is the case. The savings in
computation can be substantial: If the conditional prior of
ft ∈ RN is capped to τ previous labels, we have a reduced
overall complexity from O(T 3N3) to O(Tτ3N3) for T
sequential updates.
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