
IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 67, NO. 11, JUNE 1, 2019 3001

DeepLOB: Deep Convolutional Neural Networks for
Limit Order Books

Zihao Zhang , Stefan Zohren , and Stephen Roberts

Abstract—We develop a large-scale deep learning model to pre-
dict price movements from limit order book (LOB) data of cash
equities. The architecture utilizes convolutional filters to capture
the spatial structure of the LOBs as well as long short-term mem-
ory modules to capture longer time dependencies. The proposed
network outperforms all existing state-of-the-art algorithms on the
benchmark LOB dataset [A. Ntakaris, M. Magris, J. Kanniainen,
M. Gabbouj, and A. Iosifidis, “Benchmark dataset for mid-price
prediction of limit order book data with machine learning meth-
ods,” J. Forecasting, vol. 37, no. 8, 852–866, 2018]. In a more realistic
setting, we test our model by using one-year market quotes from the
London Stock Exchange, and the model delivers a remarkably sta-
ble out-of-sample prediction accuracy for a variety of instruments.
Importantly, our model translates well to instruments that were
not part of the training set, indicating the model’s ability to extract
universal features. In order to better understand these features and
to go beyond a “black box” model, we perform a sensitivity anal-
ysis to understand the rationale behind the model predictions and
reveal the components of LOBs that are most relevant. The ability
to extract robust features that translate well to other instruments
is an important property of our model, which has many other ap-
plications.

Index Terms—Convolutional neural network, microstructure
market data, limit order book, LSTM, time series analysis.

I. INTRODUCTION

IN TODAY’S competitive financial world more than half of
the markets use electronic Limit Order Books (LOBs) [2] to

record trades [3]. Unlike traditional quote-driven marketplaces,
where traders can only buy or sell an asset at one of the prices
made publicly by market makers, traders now can directly view
all resting limit orders1 in the limit order book of an exchange.
Because limit orders are arranged into different levels based on
their submitted prices, the evolution in time of a LOB represents
a multi-dimensional problem with elements representing the nu-
merous prices and order volumes/sizes at multiple levels of the
LOB on both the buy and sell sides.

Manuscript received October 18, 2018; revised February 11, 2019; accepted
March 9, 2019. Date of publication March 25, 2019; date of current version April
30, 2019. The associate editor coordinating the review of this manuscript and
approving it for publication was Dr. Sotirios Chatzis. This work was supported
in part by the Royal Academy of Engineering U.K. and the Oxford-Man Institute
of Quantitative Finance. (Corresponding author: Zihao Zhang.)

The authors are with the Oxford-Man Institute of Quantitative Finance, De-
partment of Engineering Science, University of Oxford, Oxford OX1 2JD,
U.K. (e-mail:,zihao@robots.ox.ac.uk; zohren@robots.ox.ac.uk; sjrob@robots.
ox.ac.uk).

Digital Object Identifier 10.1109/TSP.2019.2907260
1Limit orders are orders that do not match immediately upon submission and

are also called passive orders. This is opposed to orders that match immediately,
so-called aggressive orders, such as a market order. A LOB is simply a record
of all resting/outstanding limit orders at a given point in time.

A LOB is a complex dynamic environment with high dimen-
sionality, inducing modelling complications that make tradi-
tional methods difficult to cope with. Mathematical finance is
often dominated by models of evolving price sequences. This
leads to a range of Markov-like models with stochastic driving
terms, such as the vector autoregressive model (VAR) [4] or the
autoregressive integrated moving average model (ARIMA) [5].
These models, to avoid excessive parameter spaces, often rely
on handcrafted features of the data. However, given the billions
of electronic market quotes that are generated everyday, it is
natural to employ more modern data-driven machine learning
techniques to extract such features.

In addition, limit order data, like any other financial time-
series data is notoriously non-stationary and dominated by
stochastics. In particular, orders at deeper levels of the LOB are
often placed and cancelled in anticipation of future price moves
and are thus even more prone to noise. Other problems, such
as auction and dark pools [6], also add additional difficulties,
bringing ever more unobservability into the environment. The
interested reader is referred to [7] in which a number of these
issues are reviewed.

In this paper we design a novel deep neural network archi-
tecture that incorporates both convolutional layers as well as
Long Short-Term Memory (LSTM) units to predict future stock
price movements in large-scale high-frequency LOB data. One
advantage of our model over previous research [8] is that it has
the ability to adapt for many stocks by extracting representative
features from highly noisy data.

In order to avoid the limitations of handcrafted features, we
use a so-called Inception Module [9] to wrap convolutional and
pooling layers together. The Inception Module helps to infer lo-
cal interactions over different time horizons. The resulting fea-
ture maps are then passed into LSTM units which can capture
dynamic temporal behaviour. We test our model on a publicly
available LOB dataset, known as FI-2010 [1], and our method
remarkably outperforms all existing state-of-the-art algorithms.
However, the FI-2010 dataset is only made up of 10 consec-
utive days of down-sampled pre-normalised data from a less
liquid market. While it is a valuable benchmark set, it is ar-
guable not sufficient to fully verify the robustness of an algo-
rithm. To ensure the generalisation ability of our model, we fur-
ther test it by using one year order book data for 5 stocks from
the London Stock Exchange (LSE). To minimise the problem of
overfitting to backtest data, we carefully optimise any hyper-
parameter on a separate validation set before moving to the
out-of-sample test set. Our model delivers robust out-of-sample

1053-587X © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Oxford Libraries. Downloaded on March 23,2020 at 17:16:16 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0002-7950-7386
https://orcid.org/0000-0002-3392-0394
https://orcid.org/0000-0002-9305-9268
mailto:zihao@robots.ox.ac.uk
mailto:zohren@robots.ox.ac.uk
mailto:sjrob@robots.ox.ac.uk


3002 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 67, NO. 11, JUNE 1, 2019

prediction accuracy across stocks over a test period of three
months.

As well as presenting results on out-of-sample data (in a tim-
ing sense) from stocks used to form the training set, we also
test our model on out-of-sample (in both timing and data stream
sense) stocks that are not part of the training set. Interestingly,
we still obtain good results over the whole testing period. We
believe this observation shows not only that the proposed model
is able to extract robust features from order books, but also in-
dicates the existence of universal features in the order book that
modulate stock demand and price. The ability to transfer the
model to new instruments opens up a number of possibilities
that we consider for future work.

To show the practicability of our model we use it in a simple
trading simulation. We focus on sufficiently liquid stocks so
that slippage and market impact are small. Indeed, these stocks
are generally harder to predict than less liquid ones. Since our
trading simulation is mainly meant as a method of comparison
between models we assume trading takes place at mid-price2

and compare gross profits before fees. The former assumption is
equivalent to assuming that one side of the trade may be entered
into passively and the latter assumes that different models trade
similar volumes and would thus be subject to similar fees. Our
focus here is using a simulation as a measure of the relative
value of the model predictions in a trading setting. Under these
simplifications, our model delivers significantly positive returns
with a relatively small risk.

Although our network achieves good performance, a complex
“black box” system, such as a deep neural network, has limited
use for financial applications without some understanding of
the rationale behind the model predictions. Here we exploit the
model-agnostic LIME method [10] to highlight highly relevant
components in the order book to gain a better understanding
between our predictions and model inputs. Reassuringly, these
conform to sensible (though arguably unusual) patterns of ac-
tivity in both price and volume within the order book.

Outline: The remainder of the paper is as follows. Section II
introduces background and related work. Section III describes
limit order data and the various stages of data preparation.
We present our network architecture in Section IV and give
justifications behind each component of the model. In Section V
we compare our work with a large group of popular methods.
Section VI summarises our findings and considers extensions
and future work.

II. BACKGROUND AND RELATED WORK

Research on the predictability of stock markets has a long
history in the financial literature e.g., [11], [12]. Although opin-
ions differ regarding the efficiency of markets, many widely
accepted studies show that financial markets are to some extent
predictable [13]–[16]. Two major classes of work which attempt
to forecast financial time-series are, broadly speaking, statistical
parametric models and data-driven machine learning approaches
[17]. Traditional statistical methods generally assume that the

2The average of the best buy and best sell prices in the market at the time.

time-series under study are generated from a parametric process
[18]. There is, however, agreement that stock returns behave
in more complex ways, typically highly nonlinearly [19], [20].
Machine learning techniques are able to capture such arbitrary
nonlinear relationships with little, or no, prior knowledge re-
garding the input data [21].

Recently, there has been a surge of interest to predict limit
order book data by using machine learning algorithms [1],
[20], [22]–[29]. Among many machine learning techniques, pre-
processing or feature extraction is often performed as financial
time-series data is highly stochastic. Generic feature extraction
approches have been implemented, such as the Principal Com-
ponent Analysis (PCA) and the Linear Discriminant Analysis
(LDA) in the work of [24]. However these extraction methods
are static pre-processing steps, which are not optimised to max-
imise the overall objective of the model that observes them. In
the work of [24], [25], the Bag-of-Features model (BoF) is ex-
pressed as a neural layer and the model is trained end-to-end
using the back-propagation algorithm, leading to notably bet-
ter results on the FI-2010 dataset [1]. These works suggest the
importance of a data driven approach to extract representative
features from a large amout of data. In our work, we advocate
the end-to-end training and show that the deep neural network
by itself not only leads to even better results but also transfers
well to new instruments (not part of the training set) - indicating
the ability of networks to extract “universal” features from the
raw data.

Arguably, one of the key contributions of modern deep learn-
ing is the addition of feature extraction and representation as
part of the learned model. The Convolutional Neural Network
(CNN) [30] is a prime example, in which information extrac-
tion, in the form of filter banks, is automatically tuned to the
utility function that the entire network aims to optimise. CNNs
have been successfully applied to various application domains,
for example, object tracking [31], object-detection [32] and seg-
mentation [33]. However, there have been but a few published
works that adopt CNNs to analyse financial microstructure data
[26], [34], [35] and the existing CNN architectures are rather un-
sophisticated and lack of thorough investigation. Just like when
moving from “AlexNet” [36] to “VGGNet” [37], we show that
a careful design of network archiecture can lead to better results
compared with all existing methods.

The Long Short-Term Memory (LSTM) [38] was originally
proposed to solve the vanishing gradients problem [39] of recur-
rent neural networks, and has been largely used in applications
such as language modelling [40] and sequence to sequence learn-
ing [41]. Unlike CNNs which are less widely applied in financial
markets, the LSTM has been popular in recent years, [20], [28],
[42]–[47] all utilising LSTMs to analyse financial data. In par-
ticular, [20] uses limit order data from 1000 stocks to test a four
layer LSTM model. Their results show a stable out-of-sample
prediction accuracy across time, indicating the potential benefits
of deep learning methods. To the best of our knowledge, there
is no work that combines CNNs with LSTMs to predict stock
price movements and this is the first extensive study to apply
a nested CNN-LSTM model to raw market data. In particular,
the usage of the Inception Model in this context is novel and is

Authorized licensed use limited to: University of Oxford Libraries. Downloaded on March 23,2020 at 17:16:16 UTC from IEEE Xplore.  Restrictions apply. 



ZHANG et al.: DEEPLOB: DEEP CONVOLUTIONAL NEURAL NETWORKS FOR LIMIT ORDER BOOKS 3003

Fig. 1. A slice of LOB at time t and t + 1. L1 represents the respective first

level, L2 the second, etc. p(1)
a (t) is the lowest ask price (best ask) and p(1)

b (t)
is the highest bid price (best bid) at time t.

essential in inferring the optimal “decay rates” of the extracted
features.

III. DATA, NORMALISATION, AND LABELLING

A. Limit Order Books

We first introduce some basic definitions of limit order books
(LOBs). For classical references on market microstructure the
reader is referred to [48], [49] and for a short review on LOBs
in particular we refer to [7]. Here we follow the conventions of
[7]. A LOB has two types of orders: bid orders and ask orders.
A bid (ask) order is an order to buy (sell) an asset at or below
(above) a specified price. The bid orders have prices Pb(t) and
sizes/volumes Vb(t), and the ask orders have prices Pa(t) and
sizes/volumes Va(t). Both P(t) and V(t) are vectors represent-
ing values at different price levels of an asset.

Fig. 1 illustrates the above concepts. The upper plot shows a
slice of a LOB at time t. Each square in the plot represents an
order of nominal size 1. This is done for simplicity, in reality
different orders can be of different sizes. The blue bars represent
bid orders and the yellow bars represent ask orders. Orders are
sorted into different levels based on their submitted prices, where
L1 represents the first level and so on. Each level contains two
values: price and volume. On the bid side, Pb(t) and Vb(t) are
4-vectors in this example. We use p(1)

b (t) to denote the highest
available price for a buying order (first bid level). Similarly,
p(1)

a (t) is the lowest available selling order (first ask level). The
bottom plot shows the action of an incoming market order to
buy 5 shares at time t+ 1. As a result, the entire first and second
ask-levels are executed against that order and p(1)

a (t+ 1)moved
to 20.8 from 20.6 at time t.

B. Input Data

We test our model on two datasets: the FI-2010 dataset [1] and
one year length of limit order book data from the London Stock
Exchange (LSE). The FI-2010 dataset [1] is the first publicly
available benchmark dataset of high-frequency limit order data
and extracted time series data for five stocks from the Nasdaq
Nordic stock market for a time period of 10 consecutive days.
Many earlier algorithms are tested on this dataset and we use it
to establish a fair comparison to other algorithms. However, 10
days is an insufficient amount of data to fully test the robust-
ness and generalisation ability of an algorithm as the problem
of overfitting to backtest data is severe and we often expect a
signal to be consistent over a few months.

To address the above concerns, we train and test our model
on limit order book data of one year length for Lloyds Bank,
Barclays, Tesco, BT and Vodafone. These five instruments are
among the most liquid stocks listed on the London Stock Ex-
change. It is generally more difficult to train models on more
liquid stocks, but at the same time, those instruments are eas-
ier to trade without price impact so making the simple trading
simulation used to assess performance more realistic. The data
includes all LOB updates for the above names. It spans all trad-
ing days from 3rd January 2017 to 24th December 2017 and we
restrict it to the interval between 08:30:00 and 16:00:00, so that
only normal trading activities occur and no auction takes place.
Each state of the LOB contains 10 levels on each side and each
level contains information on both price and volume. Therefore,
we have a total of 40 features at each timestamp. Note that the
FI-2010 dataset is actually downsampled limit order book data
because the authors followed [50] to create additional features
by using every non-overlapping block of 10 events. We did not
perform any processing on our data and only feed raw order
book information to our algorithm.

Overall, our LSE dataset is made up of 12 months, and has
more than 134 million samples. On average, there are 150,000
events per day per stock. The events are irregularly spaced in
time. The time interval, �k,k+1, between two events can vary
considerably from a fraction of a second to seconds, and�k,k+1
is on average 0.192 seconds in the dataset. We take the first 6
months as training data, the next 3 months as validation data and
the last 3 months as test data. In the context of high-frequency
data, 3 months test data corresponds to millions of observations
and therefore provides sufficient scope for testing model perfor-
mance and estimating model accuracy.

C. Data Normalisation and Labelling

The FI-2010 dataset [1] provides 3 different normalised
dataset: z-score, min-max and decimal precision normalisation.
We used data normalised by z-score without any emendation
and found subtle difference when using the other two normal-
isation schemes. For the LSE dataset, we again use standard-
isation (z-score) to normalise our data, but use the mean and
standard deviation of the previous 5 days’ data to normalise
the current day’s data (with a separate normalisation for each
instrument). We want to emphasize the importance of normali-
sation because the performance of machine learning algorithms

Authorized licensed use limited to: University of Oxford Libraries. Downloaded on March 23,2020 at 17:16:16 UTC from IEEE Xplore.  Restrictions apply. 



3004 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 67, NO. 11, JUNE 1, 2019

often depends it. As financial time-series usually experiences
regime shifts, using a static normalisation scheme is not appro-
priate for a dataset of one year length. The above method is
dynamic and the normalised data often falls into a reasonable
range. We use the 100 most recent states of the LOB as an in-
put to our model for both datasets. Specifically, a single input is
defined as X = [x1, x2, . . . , xt, . . . , x100]T ∈ R100×40, where
xt = [p(i)

a (t), v(i)
a (t), p(i)

b (t), v(i)
b (t)]n=10

i=1 . p(i) and v(i) denote
the price and volume size at i-th level of a limit order book.

After normalising the limit order data, we use the mid-price

pt =
p(1)

a (t) + p(1)
b (t)

2
, (1)

to create labels that represent the direction of price changes. Al-
though no order can transact exactly at the mid-price, it expresses
a general market value for an asset and it is frequently quoted
when we want a single number to represent an asset price.

Because financial data is highly stochastic, if we simply com-
pare pt and pt+k to decide the price movement, the resulting
label set will be noisy. In the works of [1] and [26], two smooth-
ing labelling methods are introduced. We briefly recall the two
methods here. First, let m− denote the mean of the previous k
mid-prices and m+ denote the mean of the next k mid-prices:

m−(t) =
1
k

k�

i=0

pt−i

m+(t) =
1
k

k�

i=1

pt+i (2)

where pt is the mid-price defined in Equation (1) and k is the
prediction horizon. Both methods use the percentage change (lt)
of the mid-price to decide directions. We can now define

lt =
m+(t)− pt

pt
(3)

lt =
m+(t)−m−(t)

m−(t)
(4)

Both are methods to define the direction of price movement at
time t, where the former, Equation (3), was used in [1] and the
latter, Equation (4), in [26].

The labels are then decided based on a threshold (�) for the
percentage change (lt). If lt > � or lt < −�, we define it as up
(+1) or down (−1). For anything else, we consider it as station-
ary (0). Fig. 2 provides a graphical illustration of two labelling
methods on the same threshold (�) and the same prediction hori-
zon (k). All the labels classified as down (−1) are shown as red
areas and up (+1) as green areas. The uncoloured (white) regions
correspond to stationary (0) labels.

The FI-2010 dataset [1] adopts the method in Equation (3)
and we directly used their labels for fair comparison to other
methods. However, the produced labels are less consistent as
shown on the top of Fig. 2 because this method fits closer to
real prices as smoothing is only applied to future prices. This
is essentially detrimental for designing trading algorithms as
signals are not consistent here leading to many redundant trading
actions thus incurring larger transaction costs.

Fig. 2. An example of two smoothed labelling methods based on a same
threshold (�) and same prediction horizon (k). Green shading represents a +1
signal and red a −1. Top: [1]’s method and Bottom: [26]’s method.

Further, the FI-2010 dataset was collected in 2010 and the in-
struments were less liquid compared to now. We experimented
with this approach in [1] on our data from the London Stock Ex-
change and found the resulting labels are rather stochastic, there-
fore we adopt the method in Equation (4) for our LSE dataset to
produce more consistent signals.

IV. MODEL ARCHITECTURE

A. Overview

We here detail our network architecture, which comprises
three main building blocks: standard convolutional layers, an
Inception Module and a LSTM layer, as shown in Fig. 3. The
main idea of using CNNs and Inception Modules is to auto-
mate the process of feature extraction as it is often difficult in
financial applications since financial data is notoriously noisy
with a low signal-to-noise ratio. Technical indicators such as
MACD and the Relative Strength Index are included as in-
puts and preprocessing mechanisms such as principal compo-
nent analysis (PCA) [51] are often used to transform raw inputs.
However, none of these processes is trivial, they make tacit as-
sumptions and further, it is questionable if financial data can be
well-described with parametric models with fixed parameters.
In our work, we only require the history of LOB prices and sizes
as inputs to our algorithm. Weights are learned during inference
and features, learned from a large training set, are data-adaptive,
removing the above constraints. A LSTM layer is then used to
capture additional time dependencies among the resulting fea-
tures. We note that very short time-dependencies are already
captured in the convolutional layer which takes “space-time im-
ages” of the LOB as inputs.

B. Details of Each Component

1) Convolutional Layer: Recent development of electronic
trading algorithms often submit and cancel vast numbers of limit
orders over short periods of time as part of their trading strategies
[52]. These actions often take place deep in a LOB and it is seen
[7] that more than 90% of orders end in cancellation rather than
matching, therefore practitioners consider levels further away
from best bid and ask levels to be less useful in any LOB. In
addition, the work of [53] suggests that the best ask and best bid
(L1-Ask and L1-Bid) contribute most to the price discovery and

Authorized licensed use limited to: University of Oxford Libraries. Downloaded on March 23,2020 at 17:16:16 UTC from IEEE Xplore.  Restrictions apply. 



ZHANG et al.: DEEPLOB: DEEP CONVOLUTIONAL NEURAL NETWORKS FOR LIMIT ORDER BOOKS 3005

Fig. 3. Model architecture schematic. Here 1 × 2@16 represents a convolu-
tional layer with 16 filters of size (1 × 2). “1” convolves through time indices
and “2” convolves different limit order book levels.

the contribution of all other levels is considerably less, estimated
at as little as 20%. As a result, it would be otiose to feed all level
information to a neural network as levels deep in a LOB are less
useful and can potentially even be misleading. Naturally, we can
smooth these signals by summarising the information contained
in deeper levels. We note that convolution filters used in any
CNN architecture are discrete convolutions, or finite impulse
response (FIR) filters, from the viewpoint of signal processing
[54]. FIR filters are popular smoothing techniques for denoising
target signals and they are simple to implement and work with.
We can write any FIR filter in the following form:

y(n) =
M�

k=0

bkx(n− k) (5)

where the output signal y(n) at any time is a weighted sum
of a finite number of past values of the input signal x(n). The
filter order is denoted as M and bk is the filter coefficient. In a
convolutional neural network, the coefficients of the filter kernel
are not obtained via a statistical objective from traditional signal
filtration theory, but are left as degrees of freedom which the
network infers so as to extremise its value function at output.

The details of the first convolutional layer inevitably need
some consideration. As convolutional layers operate a small

kernel to “scan” through input data, the layout of limit order
book information is vital. Recall that we take the most 100 re-
cent updates of an order book to form a single input and there
are 40 features per time stamp, so the size of a single input is
(100× 40). We organise the 40 features as following:

{p(i)
a (t), v(i)

a (t), p(i)
b (t), v(i)

b (t)}n=10
i=1 (6)

where i denotes the i-th level of a limit order book. The size
of our first convolutional filter is (1× 2) with stride of (1× 2).
The first layer essentially summarises information between price
and volume {p(i), v(i)} at each order book level. The usage of
stride is necessary here as an important property of convolu-
tional layers is parameter sharing. This property is attractive as
less parameters are estimated, largely avoiding overfitting prob-
lems. However, without strides, we would apply same parame-
ters to {p(i), v(i)} and {v(i), p(i+1)}. In other words, p(i) and v(i)

would share same parameters because the kernel filter moves by
one step, which is obviously wrong as price and volume form
different dynamic behaviors.

Because the first layer only captures information at each or-
der book level, we would expect representative features to be
extracted when integrating information across multiple order
book levels. We can do this by utilising another convolutional
layer with filter size (1× 2) and stride (1× 2). The resulting
feature maps actually form the micro-price defined by [55]:

pmicro price = Ip(1)
a + (1− I)p(1)

b

I =
v(1)

b

v(1)
a + v(1)

b

(7)

The weight I is called the imbalance. The micro-price is an
important indicator as it considers volumes on bid and ask side,
and the imbalance between bid and ask size is a very strong
indicator of the next price move. This feature of imbalances has
been reported by a variety of researchers [56]–[60]. Unlike the
micro-price where only the first order book level is considered,
we utilise convolutions to form micro-prices for all levels of a
LOB so the resulting features maps are of size (100, 10) after
two layers with strides. Finally, we integrate all information by
using a large filter of size (1× 10) and the dimension of our
feature maps before the Inception Module is (100, 1).

We apply zero padding to every convolutional layer so the
time dimension of our inputs does not change and Leaky Rec-
tifying Linear Units (Leaky-ReLU) [61] are used as activation
functions. The hyper-parameter (the small gradient when the
unit is not active) of the Leaky-ReLU is set to 0.01, evaluated
by grid search on the validation set.

Another important property of convolution is that of equiv-
ariance to translation [62]. Specifically, a function f(x) is
equivariant to a function g if f(g(x)) = g(f(x)). For exam-
ple, suppose that there exists a main classification feature m
located at (xm, ym) of an image I(x, y). If we shift every
pixel of I one unit to the right, we get a new image I ′ where
I ′(x, y) = I(x− 1, y). We can still obtain the main classifica-
tion featurem′ in I ′ andm = m′, while the location ofm′ will be
at (xm′ , ym′) = (xm − 1, ym). This is important to time-series

Authorized licensed use limited to: University of Oxford Libraries. Downloaded on March 23,2020 at 17:16:16 UTC from IEEE Xplore.  Restrictions apply. 



3006 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 67, NO. 11, JUNE 1, 2019

data, because convolution can find universal features that are de-
cisive to final outputs. In our case, suppose a feature that studies
imbalance is obtained at time t. If the same event happens later
at time t′ in the input, the exact feature can be extracted later
at t′.

We do not use any pooling layer except in the Inception Mod-
ules. Although pooling layers help us find representations invari-
ant to translations of the input, the smoothing nature of pooling
can cause under-fitting. Common pooling layers are designed
for image processing tasks, and they are most powerful when
we only care if certain features exist in the inputs instead of
where they exist [62]. Time-series data has different character-
istics from images and the location of representative features
is important. Our experiences show that pooling layers in the
convolutional layer, at least, cause under-fitting problems to the
LOB data. However, we think pooling is important and new
pooling methods should be designed to process time-series data
as it is a promising solution to extract invariant features.

2) Inception Module: We note that all filters of a standard
convolutional layer have fixed size. If, for example, we em-
ploy filters of size (4× 1), we capture local interactions amongst
data over four time steps. However, we can capture dynamic be-
haviours over multiple timescales by using Inception Modules
to wrap several convolutions together. We find that this offers a
performance improvement to the resultant model.

The idea of the Inception Module can be also considered as
using different moving averages in technical analysis. Practi-
tioners often use moving averages with different decay weights
to observe time-series momentum [63]. If a large decay weight
is adopted, we get a smoother time-series that well represents the
long-term trend, but we could miss small variations that are im-
portant in high-frequency data. In practice, it is a daunting task to
set the right decay weights. Instead, we can use Inception Mod-
ules and the weights are then learned during back-propagation.

In our case, we split the input into a small set of lower-
dimensional representations by using 1× 1 convolutions, trans-
form the representations by a set of filters, here 3× 1 and 5× 1,
and then merge the outputs. A max-pooling layer is used inside
the Inception Module, with stride 1 and zero padding. “Incep-
tion@32” represents one module and indicates all convolutional
layers have 32 filters in this module, and the approach is de-
picted schematically in Fig. 4. The 1× 1 convolutions form the
Network-in-Network approach proposed in [64]. Instead of ap-
plying a simple convolution to our data, the Network-in-Network
method uses a small neural network to capture non-linear prop-
erties of our data. We find this method to be effective and it gives
us an improvement on prediction accuracy.

3) LSTM Module and Output: In general, a fully connected
layer is used to classify the input data. However, all inputs to
the fully connected layer are assumed independent of each other
unless multiple fully connected layers are used. Due to the usage
of Inception Module in our work, we have a large number of fea-
tures at end. Just using one fully connected layer with 64 units
would result in more than 630,000 parameters to be estimated,
not to mention multiple layers. In order to capture temporal rela-
tionship that exist in the extracted features, we replace the fully
connected layers with LSTM units. The activation of a LSTM

Fig. 4. The Inception Module used in the model. For example, 3 × 1@32
represents a convolutional layer with 32 filters of size (3 × 1).

unit is fed back to itself and the memory of past activations is
kept with a separate set of weights, so the temporal dynamics
of our features can be modelled. We use 64 LSTM units in our
work, resulting in about 60,000 parameters, leading to 10 times
fewer parameters to be estimated. The last output layer uses a
softmax activation function and hence the final output elements
represent the probability of each price movement class at each
time step.

V. EXPERIMENTAL RESULTS

A. Experiments Settings

We apply the same architecture to all our experiments in this
section and the proposed model is denoted as DeepLOB. We
learn the parameters by minimising the categorical cross-entropy
loss. The Adaptive Moment Estimation algorithm, ADAM [65],
is utilised and we set the parameter “epsilon” to 1 and the learn-
ing rate to 0.01. The learning is stopped when validation ac-
curacy does not improve for 20 more epochs. This is about 100
epochs for the FI-2010 dataset and 40 epochs for the LSE dataset.

We train with mini-batches of size 32. We choose a small mini-
batch size due to the findings in [66] in which they suggest that
large-batch methods tend to converge to narrow deep minima
of the training functions, but small-batch methods consistently
converge to shallow broad minima. All models are built using
Keras [67] based on the TensorFlow backend [68], and we train
them using a single NVIDIA Tesla P100 GPU.

B. Experiments on the FI-2010 Dataset

There are two experimental setups using the FI-2010 dataset.
Following the convention of [24], we denote them as Setup 1
and Setup 2. Setup 1 splits the dataset into 9 folds based on a
day basis (a standard anchored forward split). In the i-th fold,
we train our model on the first i days and test it on the (i+ 1)-th
day where i = 1, . . . , 9. The second setting, Setup 2, originates
from the works [25]–[28] in which deep network architectures
were evaluated. As deep learning techniques often require a large
amount of data to calibrate weights, the first 7 days are used as
the train data and the last 3 days are used as the test data in this
setup. We evaluate our model in both setups here.

Authorized licensed use limited to: University of Oxford Libraries. Downloaded on March 23,2020 at 17:16:16 UTC from IEEE Xplore.  Restrictions apply. 



ZHANG et al.: DEEPLOB: DEEP CONVOLUTIONAL NEURAL NETWORKS FOR LIMIT ORDER BOOKS 3007

TABLE I
SETUP 1: EXPERIMENT RESULTS FOR THE FI-2010 DATASET

Table I shows the results of our model compared to other
methods in Setup 1. Performance is measured by calculating the
mean accuracy, recall, precision, and F1 score over all folds. As
the FI-2010 dataset is not well balanced, [1] suggests to focus
on F1 score performance as fair comparisons. We have com-
pared our model to all existing experimental results including
Ridge Regression (RR) [1], Single-Layer-Feedforward Network
(SLFN) [1], Linear Discriminant Analysis (LDA) [22], Multilin-
ear Discriminant Analysis (MDA) [22], Multilinear Time-series
Regression (MTR) [22], Weighted Multilinear Time-series
Regression (WMTR) [22], Multilinear Class-specific Dis-
criminant Analysis (MCSDA) [23], Bag-of-Feature (BoF) [24],
Neural Bag-of-Feature (N-BoF) [24], and Attention-augmented-
Bilinear-Network with one hidden layer (B(TABL)) and two
hidden layers (C(TABL)) [25]. More methods such as PCA
and Autoencoder (AE) are actually tested in their works but,
for simplicity, we only report their best results and our model
achieves better performance.

However, the Setup 1 is not ideal for training deep learn-
ing models as we mentioned that deep network often requires
a large amount of data to calibrate weights. This anchored for-
ward setup leads to only one or two days’ training data for the
first few folds and we observe worse performance in the first
few days. As training data grows, we observe remarkably better
results as shown in Table II which shows the results of our net-
work compared to other methods in Setup 2. In particular, the
important difference between our model and CNN-I [26] and

TABLE II
SETUP 2: EXPERIMENT RESULTS FOR THE FI-2010 DATASET

TABLE III
AVERAGE COMPUTATION TIME OF STATE-OF-THE-ART MODELS

CNN-II [27] is due to network architecture and we can see huge
improvements on performance here. In Table III, we compare
the parameter sizes of DeepLOB with CNN-I [26]. Although
our model has many more layers, there are far fewer parameters
in our network due to the usage of LSTM layers instead of fully
connected layers.

We also report the computation time (forward pass) in mil-
liseconds (ms) for available algorithms in Table III. Due to the
development of GPUs, training deep networks is now feasible
and it is swift to make predictions, making it possible for high
frequency trading. We will discuss this more in the next section.

C. Experiments on the London Stock Exchange (LSE)

As we suggested, the FI-2010 dataset is not sufficient to ver-
ify a prediction model - it is far too short, downsampled and
taken from a less liquid market. To perform a meaningful eval-
uation that can hold up to modern applications, we further test
our method on stocks from the LSE of one year length with a
testing period of three months. As mentioned in Section III, we

Authorized licensed use limited to: University of Oxford Libraries. Downloaded on March 23,2020 at 17:16:16 UTC from IEEE Xplore.  Restrictions apply. 



3008 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 67, NO. 11, JUNE 1, 2019

TABLE IV
EXPERIMENT RESULTS FOR THE LSE DATASET

Fig. 5. Confusion matrices. Top: results on LLOY, BARC, TSCO, BT and
VOD. From the left to right, prediction horizon (k) equals 20, 50, and 100;
Bottom: results on transfer learning (GLEN, HSBC, CNA, BP, ITV).

train our model on five stocks: Lloyds Bank (LLOY), Barclays
(BARC), Tesco (TSCO), BT and Vodafone (VOD). Recent work
of [20] suggests that deep learning techniques can extract uni-
versal features for limit order data. To test this universality, we
directly apply our model to five more stocks that were not part
of the training data set (transfer learning). We select HSBC,
Glencore (GLEN), Centrica (CNA), BP and ITV for transfer
learning because they are also among the most liquid stocks in
the LSE. The testing period is the same three months as before,
and the classes are roughly balanced.

Table IV presents the results of our model for all stocks on dif-
ferent prediction horizons. To better investigate the results, we
display the confusion matrices in Fig. 5 and calculate the accu-
racy for every day and for every stock across the testing period.
We use the boxplots in Fig. 6 to present this information and
we can observe consistent and robust performance, with narrow
interquartile range (IQR) and few outliers, for all stocks across
the testing period. The ability of our model that generalises well
to data not in the training set indicates that the CNN block in the
algorithms, acting to extract features from the LOB, can capture
universal patterns that relate to the price formation mechanism.
We find this observation most interesting.

D. Performance of the Model in a Simple Trading Simulation

A simple trading simulation is designed to test the practica-
bility of our results. We set the number of shares per trade, µ,

Fig. 6. Boxplots of daily accuracy for the different prediction horizons. Top:
results on LLOY, BARC, TSCO, BT and VOD; Bottom: results on transfer
learning (GLEN, HSBC, CNA, BP, ITV).

to one both for simplicity and to minimise the market impact,
ensuring orders to be executed at the best price. Although µ can
be optimised to maximise the returns, for example, prediction
probabilities are used to size the orders in [69], we would like to
show that our algorithm can work even under this simple set-up.

To reduce the number of trades, we use following rules to take
actions. At each time-step, our model generates a signal from
the network outputs (−1, 0,+1) to indicate the price movements
in k steps. Signals (−1, 0,+1) correspond to actions (sell, wait
and buy). Suppose our model produces a prediction of +1 at
time t, we then buy µ shares at time t+ 5 (taking slippage into
account), and hold until −1 appears to sell all µ shares (we do
nothing if 0 appears). We apply the same rule to short selling
and repeat the process during a day. All positions are closed by
the end of the day, so we hold no stocks overnight. We make
sure no trades take place at the time of auction, so no abnormal
profits are generated.

As the focus of our work is on predictions and the above simple
simulation is a way of showing that this prediction is in principle
monetisable. In particular, our aim is not to present a fully de-
veloped, stand-alone trading strategy. Realistic high-frequency
strategies often require a combination of various trading signals
in particular to time the exact entry and exit points of the trade.
For the purpose of the above simulation we use mid-prices with-
out transaction costs. While in particular the second assumption
is not a reasonable assumption for a standalone strategy, we ar-
gue that (i) it is enough for a relative comparison of the above
models and (ii) it is a good indicator of the relative value of
the above predictor to a more complex high-frequency trading
model. Regarding the first assumption, a mid-mid simulation,
we note that in high-frequency trading, many participants are
involved in market making, as it is difficult to design profitable
fully aggressive strategies with such short holding periods. If we
assume that we are able to enter the trade passively, while we

Authorized licensed use limited to: University of Oxford Libraries. Downloaded on March 23,2020 at 17:16:16 UTC from IEEE Xplore.  Restrictions apply. 



ZHANG et al.: DEEPLOB: DEEP CONVOLUTIONAL NEURAL NETWORKS FOR LIMIT ORDER BOOKS 3009

Fig. 7. Boxplots for normalised daily profits and t-statistics for different stocks and prediction horizons (k). Profits are in GBX (= GBP/100).

Fig. 8. Normalised cumulative profits for test periods for different stocks and prediction horizons (k). Profits are in GBX(= GBP/100).

exit it aggressively, crossing the spread, then this is effectively
equivalent to a mid-mid trade. Such a situation arises naturally
for example in investment banks which are involved in client
market making. Regarding the second assumption, careful tim-
ing of the entry points as well as more elaborate trading rules,
such as including position upsizing, should be able to account
for additional profits to cover the transaction costs. In any case,
as merely a metric of testing predictability of our model, the
above simple simulation suffices.

Fig. 7 presents the boxplots for normalised daily profits (prof-
its divided by number of trades in that day) for different stocks
and prediction horizons. We use a t-test to check if the profits
are statistically greater than 0. The t-statistics is essentially the
same as Sharpe ratios but a more consistent evaluation metric
for high frequency trading. Fig. 8 shows the cumulative prof-
its across the testing period. We can observe consistent profits
and significant t-values over the testing period for all stocks.
Although we obtain worse accuracy for longer prediction hori-
zons, the cumulative profits are actually higher as a more robust
signal is generated.

E. Sensitivity Analysis

Trust and risk are fundamental in any financial application.
If we take actions based on predictions, it is always important

to understand the reasons behind those predictions. Neural net-
works are often considered as “black boxes” which lack inter-
pretability. However, if we understand the relationship between
the inputs’ components (e.g. words in text, patches in an image)
and the model’s prediction, we can compare those relationships
with our domain knowledge to decide if we can accept or reject
a prediction.

The work of [10] proposes a method, which they call LIME,
to obtain such explanations. In our case, we use LIME to reveal
components of LOBs that are most important for predictions and
to understand why the proposed model DeepLOB works better
than other network architectures such as CNN-I [26]. LIME
uses an interpretable model to approximate the prediction of a
complex model on a given input. It locally perturbs the input and
observes variations in the model’s predictions, thus providing
some measure of information regarding input importance and
sensitivity.

Fig. 9 presents an example that shows how DeepLOB and
CNN-I [26] react to a given input. In the figure we show the top
10 areas of pros (in green) and cons (in red) for the predicted
class (yellow being the boundary). Not coloured areas represent
the components of inputs that are less influential on the predicted
results or “unimportant”. We note that most components of the
input are inactive for CNN-I [26]. We believe that this is due to
two max-pooling layers used in that architecture. Because [26]

Authorized licensed use limited to: University of Oxford Libraries. Downloaded on March 23,2020 at 17:16:16 UTC from IEEE Xplore.  Restrictions apply. 



3010 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 67, NO. 11, JUNE 1, 2019

Fig. 9. LIME plots. x-axis represents time stamps and y-axis represents levels
of the LOB, as labelled in the top image. Top: Original image. Middle: Impor-
tance regions for CNN-I [26]. Bottom: Importance regions for DeepLOB model.
Regions supportive for prediction are shown in green, and regions against in red.
The boundary is shown in yellow.

used large-size filters in the first convolutional layer, any rep-
resentation deep in the network actually represents information
gleaned from a large portion of inputs. Our experiments applying
LIME to many examples indicate this observation is a common
feature.

VI. CONCLUSION

In this paper, we introduce the first hybrid deep neural net-
work to predict stock price movements using high frequency
limit order data. Unlike traditional hand-crafted models, where
features are carefully designed, we utilise a CNN and an Incep-
tion Module to automate feature extraction and use LSTM units
to capture time dependencies.

The proposed method is evaluated against several baseline
methods on the FI-2010 benchmark dataset and the results show
that our model performs better than other techniques in pre-
dicting short term price movements. We further test the robust-
ness of our model by using one year of limit order data from
the LSE with a testing period of three months. An interesting
observation from our work is that the proposed model gener-
alises well to instruments that did not form part of the training
data. This suggests the existence of universal features that are
informative for price formation and our model appears to cap-
ture these features, learning from a large data set including sev-
eral instruments. A simple trading simulation is used to further
test our model and we obtain good profits that are statistically
significant.

To go beyond the often-criticised “black box” nature of deep
learning models, we use LIME, a method for sensitivity analy-
sis, to indicate the components of inputs that contribute to pre-
dictions. A good understanding of the relationship between the

input’s components and the model’s prediction can help us de-
cide if we can accept a prediction. In particular, we see how
the information of prices and sizes on different levels and hori-
zons contribute to the prediction which is in accordance with
our econometric understanding.

In a recent extension of this work we have modified the
DeepLOB model to use Bayesian neural networks [69]. This al-
lows to provide uncertainty measures on the network’s outputs
which for example can be used to upsize positions as demon-
strated in [69].

In subsequent continuations of this work we would like to in-
vestigate more detailed trading strategies, using Reinforcement
Learning, which are based on the feature extraction performed
by DeepLOB.

ACKNOWLEDGMENT

The authors would like to thank members of Machine Learn-
ing Research Group at the University of Oxford for their help-
ful comments on drafts of this paper. They are most grate-
ful to the Oxford-Man Institute of Quantitative Finance, who
provided limit order data and other support. Computation for
our work was supported by Arcus Phase B and JADE HPC
at the University of Oxford and Hartree national computing
facilities, U.K.

REFERENCES

[1] A. Ntakaris, M. Magris, J. Kanniainen, M. Gabbouj, and A. Iosifidis,
“Benchmark dataset for mid-price prediction of limit order book data with
machine learning methods,” J. Forecasting, vol. 37, no. 8, 852–866, 2018.

[2] C. A. Parlour and D. J. Seppi, “Limit order markets: A survey,” in Hand-
book of Financial Intermediation and Banking. Amsterdam, The Nether-
lands: Elsevier, vol. 5, pp. 63–95, 2008.

[3] I. Rosu et al., “Liquidity and information in order driven markets,” Tech.
Rep., 2010.

[4] E. Zivot and J. Wang, “Vector autoregressive models for multivariate time
series,” Modeling Financial Time Series S-PLUS, pp. 385–429, 2006.

[5] A. A. Ariyo, A. O. Adewumi, and C. K. Ayo, “Stock price prediction
using the ARIMA model,” in Proc. 16th IEEE Int. Conf. Comput. Model.
Simulation 2014, pp. 106–112.

[6] C. Carrie, “The new electronic trading regime of dark books, mashups and
algorithmic trading,” Trading, vol. 2006, no. 1, pp. 14–20, 2006.

[7] M. D. Gould, M. A. Porter, S. Williams, M. McDonald, D. J. Fenn, and S.
D. Howison, “Limit order books,” Quantitative Finance, vol. 13, no. 11,
pp. 1709–1742, 2013.

[8] W.-C. Chiang, D. Enke, T. Wu, and R. Wang, “An adaptive stock index
trading decision support system,” Expert Syst. Appl., vol. 59, pp. 195–207,
2016.

[9] C. Szegedy et al., “Going deeper with convolutions,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., 2015, pp. 1–9.

[10] M. T. Ribeiro, S. Singh, and C. Guestrin, “Why should I trust you?: Ex-
plaining the predictions of any classifier,” in Proc. 22nd ACM SIGKDD
Int. Conf. Knowl. Discov. Data Mining., ACM, 2016, pp. 1135–1144.

[11] A. Ang and G. Bekaert, “Stock return predictability: Is it there?” Rev.
Financial Studies, vol. 20, no. 3, pp. 651–707, 2006.

[12] P. Bacchetta, E. Mertens, and E. Van Wincoop, “Predictability in financial
markets: What do survey expectations tell us?” J. Int. Money Finance,
vol. 28, no. 3, pp. 406–426, 2009.

[13] T. Bollerslev, J. Marrone, L. Xu, and H. Zhou, “Stock return predictabil-
ity and variance risk premia: Statistical inference and international ev-
idence,” J. Financial Quantitative Anal., vol. 49, no. 3, pp. 633–661,
2014.

[14] M. A. Ferreira and P. Santa-Clara, “Forecasting stock market returns: The
sum of the parts is more than the whole,” J. Financial Econ., vol. 100,
no. 3, pp. 514–537, 2011.

Authorized licensed use limited to: University of Oxford Libraries. Downloaded on March 23,2020 at 17:16:16 UTC from IEEE Xplore.  Restrictions apply. 



Authorized licensed use limited to: University of Oxford Libraries. Downloaded on March 23,2020 at 17:16:16 UTC from IEEE Xplore.  Restrictions apply. 



Authorized licensed use limited to: University of Oxford Libraries. Downloaded on March 23,2020 at 17:16:16 UTC from IEEE Xplore.  Restrictions apply. 


