Perfect simulation algorithm of a trajectory under a Feynman-Kac law

Data Assimilation, 24th-28th September 2012, Oxford-Man Institute

C. Andrieu, N. Chopin, A. Doucet, S. Rubenthaler

University of Bristol, CREST-ENSAE, University of Oxford, Université de Nice-Sophia Antipolis
Perfect simulation algorithm of a trajectory under a Feynman-Kac law

Introduction

Notations

- X_1, X_2, \ldots is a Markov chain in E with initial law M_1 and transition M (say $E = \mathbb{R}^d$ or \mathbb{Z}^d)
- $G_1, G_2, \cdots : E \to \mathbb{R}_+$ are potentials
- total time : P

One is interested in the law :

$$
\pi(f) = \frac{\mathbb{E}(f(X_1, \ldots, X_P) \prod_{i=1}^{P-1} G_i(X_i))}{\mathbb{E}(\prod_{i=1}^{P-1} G_i(X_i))}.
$$
Approximation

We can take a SMC approximating $\eta_P(f) = \frac{\mathbb{E}(f(X_P) \prod_{i=1}^{P-1} G_i(X_i))}{\mathbb{E}(\prod_{i=1}^{P-1} G_i(X_i))}$ and then take an ancestral line.
Perfect simulation

Example

If $G_i : E \rightarrow [0, 1]$, draw X_1, \ldots, X_P, $U \sim U([0, 1])$ until

$$G_1(X_1)G_2(X_1)\ldots G_{P-1}(X_{P-1}) \geq U.$$

Cost is exponential in P.

Here we will use

- a Metropolis-like algorithm on an extended space (ideas from Andrieu, Doucet, Holenstein, Particle Markov chain Monte Carlo methods, Journal of the Royal Statistical Society: Series B (Statistical Methodology)),
- coupling from the past.
Branching system

- Start with N_1 particles.
- The particle X^i_n (i-th particle at time n) has A^i_{n+1} offsprings with law $\mathbb{P}(A^i_{n+1} = j) = f_{n+1}(G_n(X^i_n), j)$ (independant of other particles).
- Total number of particles : $N_{n+1} = \sum_{i=1}^{N_n} A^i_{n+1}$.

Density :

$$q_0(N_2, \ldots, N_P, (A^i_n), (X^i_n)) = \prod_{i=1}^{N_1} M_1(X^i_1) \prod_{n=2}^{P} \left(\prod_{i=1}^{N_{n-1}} f_n(G_{n-1}(X^i_{n-1}), A^i_n) \prod_{j \in \ldots} M(X^i_{n-1}, X^j_n) \right)$$
Perfect simulation algorithm of a trajectory under a Feynman-Kac law

Metropolis-like algorithm on extended space

Branching system
How to make it work

We do not want $N_n \to 0$ or $N_n \to +\infty$.

- First run a SMC system (ξ^i_n) ($1 \leq n \leq P$, $1 \leq i \leq N_1$).
- At time n, the particles of the branching system are such that $\frac{1}{N_n} \sum_{i=1}^{N_n} \delta x^i_n \approx \eta_n$.
- Take f_n such that $\frac{1}{N_n} \sum_{i=1}^{N_n} \sum_{j=1}^{+\infty} j f_n(G_n(\xi^i_n), j) = 1$, we get

$$
\frac{1}{N_n} \sum_{i=1}^{N_n} \sum_{j=1}^{+\infty} j f_n(G_n(x^i_n), j) = 1. \quad (1)
$$
Extension

Take a trajectory and draw a branching system conditionned to contain this trajectory.
Perfect simulation algorithm of a trajectory under a Feynman-Kac law
Metropolis-like algorithm on extended space

Extension

Take a trajectory and draw a branching system conditioned to contain this trajectory.
Extension

When a particle is blue at position \(x \) at time \(n - 1 \), the number of children is chosen with law:

\[
\mathbb{P}(\text{j offsprings}) = \hat{f}_n(G_{n-1}(x), j) = \frac{f_n(G_{n-1}(x), j)}{1 - f_n(G_{n-1}(x), 0)}.
\]
Extension

When a particle is blue at position x at time $n - 1$, the number of children is chosen with law:

$\mathbb{P}(j \text{ offsprings}) = \hat{f}_n(G_{n-1}(x), j) = \frac{f_n(G_{n-1}(x), j)}{1 - f_n(G_{n-1}(x), 0)}.$

We choose f_n such that $f_n(g, 0) = 1 - \frac{g}{\|G_n\|_\infty}$, $f_n(g, j) = \frac{g}{k_n \|G_n\|_\infty}$, $1 \leq j \leq k_n$).

Then

$$\frac{\hat{f}_n(g, j)}{f_n(g, j)} = \frac{\|G_n\|_\infty}{g}$$

$(\forall n, j, g)$ and (1) is easy to fulfill.
Target density

Start with trajectory of law π and extend it into a forest. Density is

$$\hat{\pi}(\zeta_1, \ldots, \zeta_P, N_2, \ldots, N_P, (A^i_n), (X^i_n))$$

$$= \pi(\zeta_1, \ldots, \zeta_P) \times \frac{q_0(N_2, \ldots, N_P, (A^i_n), (X^i_n))}{M_1(\zeta_1) \prod_{n=2}^{P} M(\zeta_{n-1}, \zeta_n)} \times \prod_{n=2}^{P} \frac{\hat{f}_n(G_{n-1}(\zeta_{n-1}), A^i_n)}{f_n(G_{n-1}(\zeta_{n-1}), A^i_n)} .$$
Proposal

Take a branching system like above, select a particle at time P and its ancestral line. We get some density q on the space of (size of each generation) \times (numbers of offsprings) \times (positions) \times (special trajectory).
Proposal

Take a branching system like above, select a particle at time P and its ancestral line. We get some density q on the space of (size of each generation) \times (numbers of offsprings) \times (positions) \times (special trajectory).
Proposal

Take a branching system like above, select a particle at time P and its ancestral line. We get some density q on the space of (size of each generation)×(numbers of offsprings)×(positions)×(special trajectory).
Proposal

Take a branching system like above, select a particle at time P and its ancestral line. We get some density q on the space of (size of each generation) \times (numbers of offsprings) \times (positions) \times (special trajectory).
Proposal

We get the density

$$q(\zeta_1, \ldots, \zeta_P, N_2, \ldots, N_P, (A^i_n), (X^i_n))$$

$$= q_0(N_2, \ldots, N_P, (A^i_n), (X^i_n)) \times \frac{1}{N_P}.$$
Acception/rejection

Target law: trajectory with the law π, to which we add a (conditionned) branching system. We have a law $\hat{\pi}$ on “forests”.

$$
\frac{\hat{\pi}(\ldots)}{q(\ldots)} = \frac{N_P \prod_{i=1}^{P-1} \| G_i \|_\infty}{N_1 Z},
$$

with $Z := \mathbb{E}(\prod_{n=1}^{P-1} G_n(X_n))$ (partition function).
Markov chain

- start with trajectory, extend it into a “forest”
Perfect simulation algorithm of a trajectory under a Feynman-Kac law

Metropolis-like algorithm on extended space

Markov chain

- start with trajectory, extend it into a “forest”
- when at point \mathcal{X} (in “forests”): propose $\overline{\mathcal{X}}$, accept with probability $\hat{\pi}(\mathcal{X}) q(\mathcal{X})/\hat{\pi}(\mathcal{X}) q(\mathcal{X}) \wedge 1 \leq N_{\mathcal{P}} N_{\mathcal{P}} \wedge 1$, then prune the forest to have only the colored trajectory.
Markov chain

- start with trajectory, extend it into a “forest”
- when at point X (in “forests”): propose \overline{X},
- accept with probability $\frac{\hat{\pi}(\overline{X})q(\overline{X})}{\hat{\pi}(X)q(X)} \land 1 = \frac{N_P}{N_P} \land 1$,
Markov chain

- start with trajectory, extend it into a “forest”
- when at point \mathcal{X} (in “forests”): propose $\overline{\mathcal{X}}$,
- accept with probability $\frac{\hat{\pi}(\mathcal{X})q(\mathcal{X})}{\hat{\pi}(\mathcal{X})q(\mathcal{X})} \wedge 1 = \frac{\overline{N}_P}{N_P} \wedge 1$,
- then prune the forest to have only the colored trajectory.
Markov chain

- start with trajectory, extend it into a “forest”
- when at point X (in “forests”): propose \overline{X},
- accept with probability $\frac{\hat{\pi}(\overline{X})q(\overline{X})}{\hat{\pi}(X)q(X)} \wedge 1 = \frac{N_P}{N_P} \wedge 1$,
- then prune the forest to have only the colored trajectory.

We have here a Markov process on the trajectory space whose invariant law is π.

Perfect simulation algorithm of a trajectory under a Feynman-Kac law

Metropolis-like algorithm on extended space
Perfect simulation algorithm of a trajectory under a Feynman-Kac law

Metropolis-like algorithm on extended space

Markov chain

extension

or

proposal

acception/rejection

pruning
Coupling from the past in a nutshell

Transition Q of a Markov chain expressed with uniform variables:

$$Z = h(z, U) \sim Q(z, .).$$

Suppose Q has invariant law π. Take (U_k) i.i.d. For a starting point z and $n \geq 0$, set

$$Z_{-n}^z = z, \ Z_{-n+1}^z = h(Z_{-n}^z, U_n), \ldots, Z_0^z = h(Z_{-1}^z, U_1).$$

If T such that: $\forall z, z': \ Z_{-T}^z = z, \ Z_{-T}^z' = z'$, we have $Z_0^z = Z_0^{z'}$, then $Z_0^z \sim \pi$.
Coupling from the past algorithm

The easy case

- state space is totally ordered with a max and a min element
- $z \leq z' \Rightarrow h(z, U) \leq h(z', U)$
Coupling from the past algorithm

Start with law π

\max

\min

U_4 U_3 U_2 U_1

Time

Space
Perfect simulation algorithm of a trajectory under a Feynman-Kac law

Coupling from the past

Coupling from the past algorithm

![Diagram showing space-time evolution with marked time points and arrows indicating transitions between states.](image)
Detection of a coupling time

Look for a time such that the red proposal is accepted for all possible blue trajectories.

Bound the number of squares at the bottom and you bound the acceptation ratio.
Directed polymers in \mathbb{Z}

Draw $U(i,j)$ i.i.d. of Bernoulli law ($i \in \mathbb{N}, j \in \mathbb{Z}$). Take (X_n) the simple random walk in \mathbb{Z} with $X_0 = 0$. Set $G_i(j) = \exp(-\beta U(i,j))$. To draw a trajectory of length n, the cost is $O(n^3)$.

Figure: Green path has higher potential than blue path
Directed polymers in \mathbb{Z}

Figure: 500 trajectories
Directed polymers in \mathbb{Z}

Can recover that \(\frac{1}{\log P} \mathbb{E}_\pi(\max_{1 \leq n \leq P} |X_n|) \xrightarrow{P \to +\infty} \frac{2}{3}. \)

Figure: 100 trajectories
Perfect simulation algorithm of a trajectory under a Feynman-Kac law

Examples

Radar detection

- Transition (in \mathbb{R}): $M(x, dy) = \frac{1}{\sqrt{2\pi b^2}} \exp\left(-\frac{(y-ax)^2}{2b^2}\right)$
 \[X_{n+1} = aX_n + W_{n+1}. \]
- Observations: $Y_n = X_n + c \epsilon_n$ ($\epsilon_n \sim \mathcal{N}(0, 1)$). Potential
 \[G_n(x) = \frac{1}{\sqrt{2\pi c^2}} \exp\left(-\frac{(x-Y_n)^2}{2c^2}\right) \]

You can bound the number of offspring of any trajectory by discretizing the space (works for $a \in [-1, 1]$).

- : X
- - : Y
- - : perfect simulation