On the higher-order weak approximation of SDEs

Syoiti Ninomiya

Tokyo Institute of Technology

The 3rd Workshop on numerical methods for solving the filtering problem and high order methods for solving parabolic PDEs @Oxford UK(2012/9/24—28)
Abstract

Higher order weak approximation algorithms
 The weak approximation problem
 Our Higher-order scheme
 Main result
 The Algorithms
 Numerical Example

Recent developments
 Algorithm for barrier options
 Semi-closed form solutions to SDEs

Appendix/Backup
Abstract

Higher order weak approximation algorithms
Recent developments
Appendix/Backup

Background:

- A new higher-order weak approximation scheme based on [Kusuoka ’01] and [Lyons and Victoir ’04]

Objective:

- Construction of Concrete higher-order weak approximation algorithms that are:
 - Versatile, (applicable to a broad class of SDEs)
 - Easy to use, (Blackbox algorithm)
Current status for “European Option” type problems:

- Two kinds of schemes of order 2 (say Alg 1 [Victoir &N ’08] and Alg 2 [Ninomiya &N ’09]) Both work in practice.
- General extrapolation method for Alg 1 [Oshima, Teichmann and Veluscek ’09]
 Enables arbitraly order weak approximation

This talk is on:

- Higher order algorithms for barrier option pricing problem.
- New SCF to Asian option under Heston model.
References 1/3:

References 2/3:

References 3/3:

 International Workshop on Mathematical Finance “Topics on Leading-edge Numerical Procedures and Models” (16–18 Feb 2010, Tokyo)
The Problem:

Numerical calculation of $E[f(X(T, x))]$, where

$$X(t, x) = x + \sum_{j=0}^{d} \int_{0}^{t} V_j(X(s, x)) \circ dB^j(s)$$

$$V_j \in C^\infty_b(\mathbb{R}^N; \mathbb{R}^N)$$

$$B(t) = (B^0(t), B^1(t), \ldots, B^d(t)),$$

$$B^0(t) = t, \quad (B^1(t), \ldots, B^d(t)) : d\text{-dim Std. BM},$$

$\circ dB^j(s)$: Stratonovich integral.
Two approaches:

- **PDE method**

 \[
 \frac{\partial u}{\partial t}(t, x) = Lu, \quad u(0, x) = f(x).
 \]

 where \(L = V_0 + (1/2) \sum_{i=1}^{d} V_i^2 \).

- **Probabilistic method — “Simulation”**

 Step 1. Discretize \(X(t, x) \) and obtain \(X^n(t, x) \).

 \(n = \# \{ \text{partitions of } [0, T] \} \)

 Euler–Maruyama, Higher order (Milstein, Kusuoka,..)

 Step 2. Integrate \(f(X^n(T, x)) \) over \(D(n) \)-dimensional domain \([0, 1)^{D(n)} \)

 by MC, QMC, etc.

 \(D(n) \) depends on the discretization scheme

We consider only the probabilistic method here.
Simulation – MC and QMC

Step. 2 of the simulation is the numerical integration:

\[
E \left[f \left(X^n(T, x) \right) \right] = \int_{[0,1)^{D(n)}} F(a_1, \ldots, a_{D(n)}) \, da_1 \cdots da_{D(n)}
\]

Calc. RHS by using **MC** or **QMC**.
MC and QMC

\[W : \text{r. v.}/(\Omega, \mathcal{F}, P), \quad M \in \mathbb{Z}_{>0} \]

\[\text{MC}(W, M) := \frac{1}{M} \sum_{k=1}^{M} W_k, \quad \text{where } \{W_i\}_{i=1}^{M} : \text{iid s. t. } W_1 \sim W \]

\[\text{QMC}(W, M) := \frac{1}{M} \sum_{k=1}^{M} W(\omega_k), \quad \{\omega_i\}_{i=1}^{\infty} : \text{deterministic sequence (LDS)} \]

\[\text{MC}(W, M) : \quad \text{r. v.} \]

\[\text{QMC}(W, M) \in \mathbb{R}. \]
Two types of approximation errors in simulation:

1. Discretization error

\[|E[f(X(T, x))] - E[f(X^n(T, x))]| \]

2. Integration error

\[|MC(f(X^n(T, x)), M)(\omega) - E[f(X^n(T, x))]| \]

or

\[|QMC(f(X^n(T, x)), M) - E[f(X^n(T, x))]| \]
Two important remarks (1/2):
Integration error and MC By CLT,

$$\text{MC} \left(f \left(X^n(T, x) \right), M \right) \sim N \left(E \left[f \left(X^n(T, x) \right) \right], \frac{\text{Var} \left[f \left(X^n(T, x) \right) \right]}{M} \right).$$

When we proceed simulation

$$\text{Var} \left[f(X(T, x)) \right] \approx \text{Var} \left[f(X^n(T, x)) \right]$$

Remark 1
As long as we use MC, the number of sample points M needed to attain the given accuracy is independent of n and discretizing algorithm (Euler–Maruyama or Kusuoka etc.).
Two important remarks (2/2)

Integration error and QMC There exist sequences which satisfy

\[\exists C_{f,n} > 0 \forall M \in \mathbb{Z}_{>0} \]

\[\left| \text{QMC} \left(f \left(X^n(T, x) \right), M \right) - E \left[f \left(X^n(T, x) \right) \right] \right| \leq C_{f,D(n)} \frac{(\log M)^{D(n)}}{M}. \]

Remark 2

In contrast to the MC case, the number of sample points \(M \) needed by the QMC to attain the given accuracy depends heavily on the dimension of integration \(D(n) \). Smaller the dimension, smaller number of samples are needed.

\[D(n) = \begin{cases}
 n \times d & \text{Euler–Maruyama,} \\
 n \times (d + 1) & \text{N. & Victoir,} \\
 2n \times d & \text{Ninomiya, & N.}
\end{cases} \]
Order 1: Euler–Maruyama scheme

\[X^{(EM),n}(0, x) = x, \]
\[X^{(EM),n}\left(\frac{k + 1}{n}, x\right) = X^{(EM),n}\left(\frac{k}{n}, x\right) + \sqrt{\frac{T}{n}} \sum_{i=0}^{d} \tilde{V}_i \left(X^{(EM),n}\left(\frac{k}{n}, x\right) \right) Z_{k+1}^i, \]

where,

\[\forall j \ Z_j^k = \begin{cases} \sqrt{T/n}, & \text{if } k = 0, \\ \text{iid. r. v. } \sim N(0, 1), & \text{if } k \in \{1, \ldots, d\}, \end{cases} \]
\[\tilde{V}_k^i (y) = \begin{cases} V_0^i (y) + \frac{1}{2} \sum_j V_j V_j^i (y) & \text{if } k = 0, \\ V_k^i & \text{if } k \in \{1, \ldots, d\}. \end{cases} \]
Approx. Error of Euler–Maruyama scheme

\[|E[f(X(T, x))] - E\left[f\left(X^{(EM), n}(T, x)\right)\right]| = O\left(n^{-1}\right) = O(\Delta t) \]

when \(f \): bdd. & measurable and \(\{V_i\}_{i=0}^d \): Unif. Hörmander Cond. [Bally & Talay '96][Kohatsu-Higa '00]

Euler–Maruyama scheme is an order 1 scheme.
Intuitive explanation of the scheme (1/3)

\((P^X_t f)(x) := E[f(X(t, x))], \quad f \in C^\infty_b(\mathbb{R}^N)\)

\[L := V_0 + \frac{1}{2} \sum_{j=1}^{d} V_j^2.\]
Intuitive explanation of the scheme (2/3)

Applying Ito formula repeatedly, we obtain

\[E \left[f(X(t, x)) \right] = (P^X_t f)(x) = f(x) + \int_0^t \left(P^X_{s_1} L f \right)(x) \, ds_1 \]

\[= f(x) + \int_0^t \left\{ (Lf)(x) + \int_0^{s_1} \left(P^X_{s_2} L^2 f \right)(x) \, ds_2 \right\} \, ds_1 \]

\[\vdots \]

\[= \sum_{i=0}^n \left(\frac{tL} {i!} \right)^i f(x) + \frac{1} {n!} \int_0^t (t - s)^n \left(P^X_s L^{n+1} f \right)(x) \, ds. \]
Intuitive explanation of the scheme (3/3)

Observation: \[\sum_{i=0}^{n} \left(\frac{(tL)^i}{i!} f \right)(x) \] gives a \(n \)th order approx. of \(E[f(X(t, x))] \).

Slogan: Construct a random variable \(\Xi \) s. t.

\[E[\Xi] = \sum_{i=0}^{n} \left(\frac{(tL)^i}{i!} f \right)(x). \]
Free Lie Algebra

Non-commutative algebra (1)

\[A := \{v_0, \ldots, v_d\} : \text{alphabet} \]

\[A^* := \left(\bigcup_{k=1}^{\infty} A^k \right) \cup \{1\} : \text{free monoid on } A \]

For \(w = w_1 \cdots w_k \in A^*, \ (w_i \in A) \)

\[|w| := k, \ |w| := |w| + \text{card } (\{1 \leq i \leq |w|; \ w_i = v_0\}) , \]

\[A^*_m := \{ w \in A^* \ | |w| = m \}, \]

\[A_{\leq m}^* := \{ w \in A^* \ | |w| \leq m \}. \]

Concatenation product:

For \(u = u_1 \cdots u_k, \ v = v_1 \cdots v_l \in A^* , \)

\[u v := u_1 \cdots u_k v_1 \cdots v_l . \]
Non-commutative algebra (2)

\[R\langle\langle A\rangle\rangle := \left\{ \sum_{w \in A^*} a_w w \mid a_w \in R \right\} : R\text{-algebra of formal series with basis } A^*, \]

\[R\langle A \rangle := \left\{ \sum_{w \in A^*} a_w w \in R\langle\langle A\rangle\rangle \mid \exists k \in \mathbb{N} \text{ s.t. } a_w = 0 \text{ if } |w| \geq k \right\} \]

: free \(R \)-algebra with basis \(A^* \),

\((P, w) := a_w, \text{ for } P = \sum_{w \in A^*} a_w w \in R\langle\langle A\rangle\rangle, \)

\((PQ, w) := \sum_{uv = w} (P, u)(Q, v), \text{ for } P, Q \in R\langle\langle A\rangle\rangle, w \in A^*. \)
Non-commutative algebra (3)

- Projection and Truncation:

\[j_m(P) := \sum_{\|w\| \leq m} (P, w)w \]

\[P|_k := \sum_{\|w\| = k} (P, w)w \]

- Homogeneous component:

\[\mathbb{R}\langle A \rangle_m := \{ P \in \mathbb{R}\langle A \rangle | (P, w) = 0 \text{ if } \|w\| \neq m \} \]
Free Lie algebra:

\[[P, Q] := PQ - QP \quad \text{for } P, Q \in \mathbb{R}\langle\langle A\rangle\rangle, \]

\[\mathcal{J}_A := \left\{ K \subset \text{sub } \mathbb{R}\text{-module} \mathbb{R}\langle A\rangle \bigg| A \subset K, [x, y] \in K \forall x, y \in K, \right\} \]

\[\mathcal{L}_\mathbb{R}(A) := \bigcap_{K \in \mathcal{J}_A} K : \mathbb{R}\text{-coefficients free Lie algebra on } A \]

\[\mathcal{L}_\mathbb{R}((A)) := \left\{ P \in \mathbb{R}\langle\langle A\rangle\rangle \text{ s.t. } P|_k \in \mathcal{L}_\mathbb{R}(A), \forall k \in \mathbb{N} \right\}. \]
Logarithm and exponential:
For $P \in \mathbb{R}\langle\langle A \rangle\rangle$ s.t. $(P, 1) = 0$

$$\exp(P) := 1 + \sum_{k=1}^{\infty} \frac{P^k}{k!}.$$

For $Q \in \mathbb{R}\langle\langle A \rangle\rangle$ s.t. $(Q, 1) = 1$

$$\log(Q) := \sum_{k=1}^{\infty} \frac{(-1)^{k-1}(Q - 1)^k}{k}.$$

$\log(\exp(P)) = P$ and $\exp(\log(Q)) = Q$.

S. Ninomiya
Higher-order weak approximation algorithms for SDEs
Hausdorff product:
For $z_1, z_2 \in L_\mathbb{R}((A))$,

$$z_1HZ_2 := \log(\exp(z_1) \exp(z_2)).$$

- $(z_1HZ_2)HZ_3 = \log(\exp(z_1) \exp(z_2) \exp(z_3)) = z_1H(z_2HZ_3) =: z_1HZ_2HZ_3$

- $z_2, z_1 \in L_\mathbb{R} \implies z_2HZ_1 \in L_\mathbb{R}((A))$
 \therefore the Baker–Campbell–Hausdorff–Dynkin formula.
$\mathcal{L}_\mathbb{R}(A)$ and $\mathbb{R}\langle A \rangle$

Element of $\mathcal{L}_\mathbb{R} \iff$ Vector field generated by V_0, \ldots, V_d
Elements of $\mathbb{R}\langle A \rangle \iff$ Differential operator generated by V_0, \ldots, V_d
Resurgence and rescaling

- Resurgence operator Φ:

$$
\Phi(1) := \text{id}, \quad \Phi(v_{i_1} \cdots v_{i_n}) := V_{i_1} \cdots V_{i_n}
$$

- Rescaling operator: For $s > 0$, $\psi_s : \mathbb{R} \langle \langle A \rangle \rangle \to \mathbb{R} \langle \langle A \rangle \rangle$ is defined as:

$$
\psi_s \left(\sum_{m=0}^{\infty} P_m \right) = \sum_{m=0}^{\infty} s^{m/2} P_m \quad \text{where } P_m \in \mathbb{R} \langle A \rangle_m.
$$

Example:

$$
\Phi \left(\psi_s \left(v_0 + \frac{1}{2} [v_1, v_2] \right) \right) = sV_0 + \frac{s}{2} [V_1, V_2]
$$
Notation: $\exp(V)(x)$

For a smooth vector field V, (i.e. $V \in C^\infty_b(\mathbb{R}^N; \mathbb{R}^N)$)

$$\exp(V)(x) := y(1)$$

where $y(t)$ is a solution to the ODE:

$$y(0) = x, \quad \frac{dy(t)}{dt} = V(y(t))$$

S. Ninomiya
Higher-order weak approximation algorithms for SDEs
Order m Integration scheme: $\mathcal{IS}(m)$

\[g \in \mathcal{IS}(m) \iff \begin{cases} & g : C_b^\infty(\mathbb{R}^N; \mathbb{R}^N) \rightarrow (\mathbb{R}^N \rightarrow \mathbb{R}^N), \\ & \exists C_m > 0 \text{ s.t. } \forall W \in C_b^\infty(\mathbb{R}^N; \mathbb{R}^N) \\ & \sup_{x \in \mathbb{R}^N} |g(W)(x) - \exp(W)(x)| \leq C_m (\|W\|_{C^{m+1}})^{m+1} \end{cases} \]

- $\mathcal{IS}(m) \equiv \text{“Set of order } m \text{ ODE solver”}$
- We need to integrate, for example:

\[sV_0 + \frac{\sqrt{s}}{2}(V_1 + \cdots + V_d) \]

Not necessarily s-linear.
\(\mathcal{R}\langle\langle A\rangle\rangle, \mathcal{L}_\mathbb{R}(\langle A\rangle) \)-valued random variables

- Topology: \(\mathcal{R}\langle\langle A\rangle\rangle \approx \mathcal{R}^\infty \) – Direct product topology
- \(\mathcal{R}\langle\langle A\rangle\rangle \)-valued and \(\mathcal{L}_\mathbb{R}(\langle A\rangle) \)-valued probability theory can be considered.

(Ito formula, etc.)
Approximation theorem (1/2)

\(m \geq 1, \ M \geq 2, \)
\(Z_1, \ldots, Z_M: \mathcal{L}_\mathbb{R}((A))\)-valued random variables s. t.

\[
Z_i = j_m Z_i \quad \text{for} \ i = 1, \ldots, M, \\
E [\|j_m Z_i\|_2] < \infty \quad \text{for} \ i = 1, \ldots, M, \\
E \left[\exp \left(a \sum_{j=1}^{M} \| \Phi (\Psi_s(Z_j)) \|_{C^{m+1}} \right) \right] < \infty \quad \text{for any} \ a > 0.
\]
Approximation theorem (2/2)

\[\forall p \in [1, \infty), \forall g_1, \ldots, g_M \in IS(m), \exists C_{m,M} > 0 \text{ s.t.} \]

\[\left\| \sup_{x \in \mathbb{R}^N} \left| g_1 \left(\Phi \left(\Psi_s (Z_1) \right) \right) \circ \cdots \circ g_M \left(\Phi \left(\Psi_s (Z_M) \right) \right) (x) - \exp \left(\Phi \left(\Psi_s \left(j_m \left(Z_M H \cdots H Z_1 \right) \right) \right) \right) (x) \right\|_{L^p} \leq C_{m,M} s^{(m+1)/2} \]

for \[\forall s \in (0, 1] \] where \(C_{m,M} \) depends only on \(m \) and \(M \).

\(f \circ g(x) := f \left(g(x) \right) \)
Cor. to the Approximation theorem

“$Q(s)$ gives $(m - 1)/2$-order weak approximation.”

Let $Q(s)$ for $s \in (0, 1]$ be

$$
(Q(s)f)(x) := E[f(g(\Phi(\psi_s(Z_1))) \circ \cdots \circ g(\Phi(\psi_s(Z_M))))(x)],
$$

where $f \in C^\infty_b(\mathbb{R}^N; \mathbb{R})$ and $g \in IS(m)$ then $\exists C > 0,$

$$
\|P_s f - Q(s)f\|_\infty \leq Cs^{(m+1)/2}\|\text{grad}(f)\|_\infty
$$

$P_s(f) := E[f(X(t, x))]$

(\textbf{Remark:} When $\{V_0, \ldots, V_d\}$ finitely generated.)
Algorithm 1

(Victoir–N. (2004))

\((\Lambda_i, Z_i)_{i \in \{1, \ldots, n\}} : 2n \text{ indep. r. v.},\)

\(\forall i \ P(\Lambda_i = \pm 1) = \frac{1}{2}, \ Z_i \sim N(0, I_d).\)

\(\{X_k^{(\text{Alg.1}), n}\}_{k=0, \ldots, n} : \text{a family of r. v. defined as:}\)

\[
X_0^{(\text{Alg.1}), n} := x,
\]

\[
X^{(\text{Alg.1}), n}_{(k+1)/n} :=
\begin{cases}
 \exp\left(\frac{V_0}{2n}\right)\exp\left(\frac{Z_k^1 V_1}{\sqrt{n}}\right) \cdots \exp\left(\frac{Z_k^d V_d}{\sqrt{n}}\right) \exp\left(\frac{V_0}{2n}\right) X_k^{(\text{Alg.1}), n} & \Lambda_k = +1, \\
 \exp\left(\frac{V_0}{2n}\right)\exp\left(\frac{Z_k^1 V_1}{\sqrt{n}}\right) \cdots \exp\left(\frac{Z_k^d V_d}{\sqrt{n}}\right) \exp\left(\frac{V_0}{2n}\right) X_k^{(\text{Alg.1}), n} & \Lambda_k = -1.
\end{cases}
\]
Extrapolations of Algorithm 1

- To an arbitrary order [Oshima, Teichmann and Veluscek ’09]
- To the 6th order [Fujiwara ’06]
General framework of Algorithm 2 (1)

- Remind the Slogan

- Find the Ξ written as:

\[
\log \Xi = Z_1 H Z_2 H \cdots H Z_M
\]

\[
Z_j = c_j v_0 + \sum_{i=1}^{d} S_{ij}^i v_i, \quad j \in \{1, \ldots, M\}
\]

where

\[
c_j \in \mathbb{R} \text{ s.t. } c_1 + \cdots + c_M = 1
\]

\[
E \left[S_j^i S_j^{i'} \right] = R_{jj'} \delta_{ii'}
\]

\[
S_j^i \sim \mathcal{N}(0, R_{jj}) \quad (i \in \{1, \ldots, d\}, \ j \in \{1, \ldots, M\})
\]
General framework of Algorithm 2 (2)

The slogan is equivalent to:

\[E[j_m (\exp(Z_1) \cdots \exp(Z_M))] = j_m \left(\exp \left(v_0 + \frac{1}{2} \sum_{i=1}^{d} v_i^2 \right) \right) \]

(2)

The problem:

Find real numbers \(\{c_j\}_{j=1}^{M}, \{R_{ij}\}_{1 \leq i \leq j \leq M} \) that satisfy (2).

\[\# \text{unknown vars} = \frac{1}{2} M(M + 3) \]
Main tools (Theorem 1):

For the LHS of (2)
If \(n^w(i) \) is odd for some \(i \in \{1, \ldots, d\} \), then \(C(w) = 0 \). If \(n^w(i) \) is even for every \(i \in \{1, \ldots, d\} \), then

\[
C(w) = \sum_{\vec{k} = (k_1, \ldots, k_M) \in \mathcal{K}_r(M)} \frac{1}{k_1! \cdots k_M!} \prod_{j=1}^{M} (c_j)^{N^w(0,j,\vec{k})}
\]

\[
\times \prod_{p=1}^{d} \left(\sum_{\{d_{ij}\}^{1 \leq i \leq j \leq M} \in e(N^w(p,1,\vec{k}), \ldots, N^w(p,M,\vec{k}))} 2^{-\sum_{i=1}^{M} d_{ij}} \frac{\prod_{j=1}^{M} (N^w(p,j,\vec{k})!)}{\prod_{1 \leq i \leq j \leq M} (d_{ij}!)} \prod_{1 \leq i \leq j \leq M} R_{ij}^{d_{ij}} \right)^{(3)}
\]
Main tools (Theorem 2):

For the RHS of (2)

Let \(A^0 = \{v_0, v_1, v_2, \ldots, v_d \} \subset A^* \). Then

\[
\exp \left(v_0 + \frac{1}{2} \sum_{i=1}^{d} v_i^2 \right) = \sum_{w=w_1 \ldots w_l} \frac{1}{2^{|w|-l}!} w, \]

that is,

\[
C(w) = \begin{cases}
\frac{1}{2^{|w|-l}!} & \text{if } w \in A^0 \\
0 & \text{otherwise.}
\end{cases} \] (4)
Algebraic Relations

- Algebraic relations between \(\{c_j\}_{j=1}^M, \{R_{ij}\}_{1 \leq i \leq j \leq M} \)
- Using following 3 results, those relations are obtained.
An example of Algorithm 2 [Ninomiya–N. (2009)]

When \((m, M) = (5, 2)\),

\[
c_1 = \frac{\mp \sqrt{2} (2u - 1)}{2}, \quad c_2 = 1 \pm \frac{\sqrt{2} (2u - 1)}{2}
\]

\[
R_{22} = 1 + u \pm \sqrt{2 (2u - 1)}, \quad R_{12} = -u \mp \frac{\sqrt{2} (2u - 1)}{2}
\]

\[
R_{11} = u \quad \text{for some } u \geq 1/2.
\]

Becomes 1-dimensional ideal.
Partial results (1):

- The case $m \geq 6$:
 - $(m, M) = (7, 2)$: ideal becomes trivial
 (i.e. $= \mathbb{C} [c_1, c_2, R_{11}, R_{12}, R_{13}]$)
 - $(m, M, d) = (7, 3, 1)$: ideal becomes trivial.
Partial results (2):

- The case \((m, M, d) = (7, 3, 2)\) and \(v_0\) free: The algebraic relation:

\[
\begin{align*}
14R_{22} + 24R_{13} - 13, & \quad 4R_{33} + 14R_{22} + 4R_{11} - 15, & \quad 36R_{33}^2 - 60R_{22} + 25, \\
-72R_{22}R_{33} + 68R_{33} + 24R_{23} + 22R_{22} - 17, & \quad -288R_{23}R_{33} - 8R_{33} + 264R_{23} - 46R_{22} + 77, \\
12R_{23} - 22R_{22} + 12R_{12} + 23, & \quad 8R_{33} + 216R_{22}R_{23} - 156R_{23} + 34R_{22} - 27 \\
-22R_{33} - 324R_{23}^2 - 192R_{23} + 46R_{22} - 57, & \quad 144R_{33}^2 - 64R_{33} + 168R_{23} + 46R_{22} + 7
\end{align*}
\]

Unfortunately, the solution is:

\[
R_{33} = \frac{5 \pm \sqrt{-11}}{12} \not\in \mathbb{R}
\]
Partial results (3):
The case \((m, M, d) = (7, 4, 3)\) and \(v_0\) free: Over 1-month symbolical calculation cannot find the answer.....
We have some more results (Theorem 3):

\[A^* = \bigcup_{i=0}^{\infty} A^i, \; \mathbin{\lhd} : A^* \otimes A^* \to A^* : \text{Shuffle product}. \]

\((A^*, \mathbin{\lhd})\) becomes an algebra (shuffle algebra).

\[C(\cdot) \]

\[C : (A^*, \mathbin{\lhd}) \longrightarrow \mathbb{R}[c_j, R_{ij}, (1 \leq i \leq j \leq M)] \]

is ring homomorphism.

Cor.

\[C \left((0)^{n_0} \mathbin{\lhd} (11) \mathbin{\lhd} \cdots \mathbin{\lhd} (\ell \ell) \right) = C(0)^{n_0} C(11)^\ell \]
An example of Algorithm 2 [Ninomiya–N. (2005)]

\[
\begin{pmatrix}
Z_{i,k}^1 \\
Z_{i,k}^2
\end{pmatrix}_{i \in \{1, \ldots, d\}, j \in \{1, 2\}, k \in \{0, \ldots, n-1\}}
= \begin{pmatrix}
1/2 & 1/\sqrt{2} \\
1/2 & -1/\sqrt{2}
\end{pmatrix}
\begin{pmatrix}
\eta_{i,k}^1 \\
\eta_{i,k}^2
\end{pmatrix},
\quad \text{where } \eta_{i,k}^j \sim \text{i.i.d. } N(0, 1).
\]

\{X_{k}^{(\text{Alg.2)},n}\}_{k=0,\ldots,n} : \text{a family of r. v. defined as:}

\[
X_{0}^{(\text{Alg.2)},n} := x,
\]

\[
X_{(k+1)/n}^{(\text{Alg.2)},n} :=
\exp \left(\frac{1}{2n} V_0 + \sum_{i=1}^{d} \frac{Z_{i,k}^1}{\sqrt{n}} V_i \right)
\exp \left(\frac{1}{2n} V_0 + \sum_{i=1}^{d} \frac{Z_{i,k}^M}{\sqrt{n}} V_i \right) X_{k/n}^{(\text{Alg.2}),n}
\]
Theorem
Both $X^{(\text{Alg.1}),n}$ and $X^{(\text{Alg.2}),n}$ are of order 2.

Recent result by Kusuoka
If $Q(s)$ is constructed by $X^{(\text{Alg.1}),n}$ or $X^{(\text{Alg.2}),n}$ then $\exists C > 0$ s.t.

$$(P_s f)(x) - (Q(s)f)(x) = Cs^{(m+1)/2} + O\left(s^{(m+3)/2}\right)$$
Higher order weak approximation algorithms
Recent developments
Our Higher-order scheme
Main result
The Algorithms
Numerical Example

Abstract

The weak approximation problem

The Algorithms

D(n)

D(n) : dimension of integration domain

\[
D(n) = \begin{cases}
 n \times d & \text{Euler–Maruyama,} \\
 n \times (d + 1) & \text{Algorithm 1} \\
 n \times 2 \times d & \text{Algorithm 2}
\end{cases}
\]
The Runge–Kutta method

How to calc. $\exp(Z_i)(x)$?

- Lucky case: We can get exact form of $\exp(Z_i)(x)$. Often the case with Algorithm 1.
- Otherwise: Forced to proceed with numerical approximation.

Good news:

Theorem [Ninomiya–N.]

Classical order m Runge–Kutta methods belongs to $IS(m)$
MC or QMC with Algorithms 1 and 2

- W: “a set of ODEs”-valued r. v. by Algorithm 1 or 2
- MC or QMC:
 - Draw a set of ODEs \(W(\omega) \) from \(W \) and obtain (something like) \(\exp(W(\omega))(x) \) numerically
 - Iterate the step above and calculate the average:

\[
\frac{1}{M} \sum_{i=1}^{M} \exp(W(\omega_i))(x)
\]
Advantages of the approach

- Free from symbolical calculation.
 - Calc. in group is easy.
 - Numerical ODE solver works (by the 2nd th’m)
 - Calc. in algebra is difficult.
 - Huge symbolical calc.
 - Simultaneous distributions of multiple integrations of BMs are not known. (except for the 2nd order.)

- Universal (applicable to non-commutative \(\{V_i\}_{i=0}^d \))
 Naïve “Ito-Taylor expansion with the Runge–Kutta” suffers from the non-commutativity.
Numerical Example:

Pricing of Asian option under the Heston model:

\[
Y_1(t, x) = x_1 + \int_0^t \mu Y_1(s, x) \, ds + \int_0^t Y_1(s, x) \sqrt{Y_2(s, x)} \, dW^1(s),
\]

\[
Y_2(t, x) = x_2 + \int_0^t \alpha (\theta - Y_2(s, x)) \, ds + \int_0^t \beta \sqrt{Y_2(s, x)} \, dW^2(s),
\]

\[
\langle W^1, W^2 \rangle_t = \rho t
\]

Asian Option:

\[
Y_3(t, x) = \int_0^t Y_1(s, x) \, ds, \quad \text{Payoff} = \max \left(\frac{Y_3(T, x)}{T} - K, 0 \right).
\]
Abstract

Higher order weak approximation algorithms
Recent developments
Appendix/Backup

The weak approximation problem
Our Higher-order scheme
Main result
The Algorithms
Numerical Example

Discretization Error

Discretization Error and Num. of Partitions

Euler-Maruyama
Euler-Maruyama + Romberg
Ninomiya-Victoir
Ninomiya-Victoir + Romberg
New Method
New Method + Romberg
O(1/n^2)
O(1/n^3)
5e-05
5e-06

Error vs Num. of Partitions

S. Ninomiya
Higher-order weak approximation algorithms for SDEs
Convergence Error from quasi-Monte Carlo and Monte Carlo

- QMC: New Method + Romberg, $1/\Delta t=2$
- QMC: Ninomiya-Victoir + Romberg, $1/\Delta t=4$
- QMC: New Method, $1/\Delta t=10$
- QMC: Ninomiya-Victoir, $1/\Delta t=12$
- QMC: Euler-Maruyama + Romberg, $1/\Delta t=16$
- MC: Euler-Maruyama

S. Ninomiya
Higher-order weak approximation algorithms for SDEs
Overall performance comparison:
#Partition, #Dim, #Sample, and CPU time required for 10^{-4} accuracy.

<table>
<thead>
<tr>
<th>Method</th>
<th>#Partition</th>
<th>#Dim</th>
<th>#Sample</th>
<th>CPU time (sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>E-M + MC</td>
<td>2000</td>
<td>4000</td>
<td>10^8</td>
<td>1.72×10^5</td>
</tr>
<tr>
<td>E-M + Extrpltn + QMC</td>
<td>16 + 8</td>
<td>48</td>
<td>5×10^6</td>
<td>1.27×10^2</td>
</tr>
<tr>
<td>N-V + QMC</td>
<td>12</td>
<td>36</td>
<td>2×10^5</td>
<td>3.24</td>
</tr>
<tr>
<td>N-V + Extrpltn + QMC</td>
<td>4 + 2</td>
<td>18</td>
<td>2×10^5</td>
<td>1.76</td>
</tr>
<tr>
<td>KNN + QMC</td>
<td>10</td>
<td>40</td>
<td>2×10^5</td>
<td>3.4</td>
</tr>
<tr>
<td>KNN + Extrpltn + QMC</td>
<td>2 + 1</td>
<td>12</td>
<td>2×10^5</td>
<td>1.2</td>
</tr>
</tbody>
</table>
Recent developments (1/2):

- Existence of the asymptotic expansion of the errors of Algorithms 1 and 2 [Kusuoka]
- Extrapolation of Algorithm 1
 - To order 6 [Fujiwara ’06]
 - To arbitrary order [Oshima, Teichmann and Veluscek ’09]
- SPDE case [Teichmann]
- Levy driven case [Tanaka and Kohatsu-Higa ’09]
Recent developments (2/2):

- Semi-closed form solutions to generalized SABR models by Algorithm 1 [Bayer, Friz and Loeffen ’10]
- Algorithms for Barrier-option pricing case [Kusuoka ’10][Kusuoka, Ninomiya and N. ’12]
- Semi-closed form solutions to Heston models by Algorithms 1 and 2.
Barrier option problem:
Calculate
\[
E \left[f(X(t, x)), \min_{s \in [0,t]} X(s, t) > 0 \right]
\] (5)
umerically, where \(X(t, x)\) is a diffusion starting from \(x\).
The 1 dimensional case (i.e. $X : [0, 1] \times \mathbb{R} \times \Omega \to \mathbb{R}$)

Time horizon $= 1$.

\[
X(t, x) = x + \int_0^t V_0(X(s, x)) \, ds + \int_0^t dB(s)
\]

\[
(P_tf)(x) = E \left[f(X(t, x)), \min_{s \in [0, t]} X(s, x) > 0 \right]
\]
killing function k

$$k : (0, 1] \times [0, \infty) \times \mathbb{R} \rightarrow [0, 1] \quad \text{measurable func.}$$

- Naive killing:
 $$k(s, x, y) = \begin{cases}
 0, & \text{if } y > 0, \\
 1, & \text{otherwise}
 \end{cases}$$

- Standard killing:
 $$k(s, x, y) = \begin{cases}
 \exp\left(-\frac{2xy}{s}\right), & \text{if } y > 0, \\
 1, & \text{otherwise}
 \end{cases}$$

- Improved standard killing:
 $$k(s, x, y) = \begin{cases}
 \exp\left(\frac{2xy}{s}\right)k(s, x, y^{(2)}), & \text{if } y > 0,
 \end{cases}$$
Approximating operator Q_s:

$$(Q_s f)(x) := E \left[f \left(F \left(X_{(n/N)}^N; x, s \right) \right) \left(1 - k \left(s, x, F \left(X_{(n/N)}^N; x, s \right) \right) \right) \right]$$

where F is the discretization scheme (ex. Euler-Maruyama, Alg-1, Alg-2).
Naive killing does not work 1

\[V_0(x) = 1 + x \]

Discr Err: \(E[f(X(1)), X(t) > 0, t < 1], dX(t,x) = (1 + X(t,x))dt + dB(t), f: \text{digital call}, \text{naive killing}, g = 1, M = 100M \)

\[V_0(x) = 1 + x \]
Naive killing does not work 2

\[V_0(x) = \cos(x) + 3/2 \]

Discr Err: E[f(X(1)), X(t)>0, t<1], dX(t,x)=(\cos(X(t,x))+2/3)dt+dB(t), f: euro call, naive killing, g=1, M=100M
Standard killing

$$V_0(x) = 1 + x$$

Discr Err: $E[f(X(1)), X(t)>0, t<1], dX(t,x)=(1+X(t,x))dt+dB(t), f: digit. call, \gamma=1.0, Standard\ Killing$

S. Ninomiya
Higher-order weak approximation algorithms for SDEs
Standard killing

\[V_0(x) = \cos(x) + \frac{3}{2} \]

Discr Err: \(E[\text{f}(X(1)), X(t) > 0, t < 1], \, dX(t, x) = (\cos(X(t, x)) + \frac{3}{2})dt + dB(t), \, \text{f: euro call}, g=1.0 \)
Standard killing

\[V_0(x) = \cos(x) + \frac{3}{2} \]

Discr Err: \(E[f(X(1)), X(t) > 0, t < 1] \), \(dX(t) = (\cos(X(t)) + 3/2)dt + dB(t) \), f: euro call
Observation

- $Q(s)$ seems versatile and promising.
- Standard killing works.
- But, cannot see the “Improved” effect.
- Again, γ paradox arises.
- Straightforward extension of the formula to multi-dimensional cases is possible.
Semi-closed form solution (SCF) When all ODEs that arise in Alg. 1 have closed form solutions, the algorithm is called semi-closed form solution (SCF in the following).

Bayer-Friz-Loeffen ’10 [BFL10]

- SCFs to SABR and generalized SABR models.
- Transform the problem by adding constant drift:

\[B^Q(t) = \gamma t + B^P(t) \quad \gamma \in \mathbb{R} \]

- SABR: One of the two important SV models in finance.
[Kubo–N. (2012)]

SCFs to the Asian option problem under Heston model by Alg 2.

Heston model The other important SV model in finance.

- The squared volatility process is of CIR type.

Alg 2 ODEs are more complex than Alg 1 case.

ODEs in Alg 1 \(\exp \left(\sqrt{\Delta t} \xi_i V_i \right) x \)

ODEs in Alg 2 \(\exp \left(\frac{\Delta t}{2} V_0 + \sum_{i=1}^{d} \sqrt{\Delta t} \xi_i V_i \right) x \)
Asian Option under Heston model:

Numerical Calc. of $E \left[\max \left(X^3(T)/T - K, 0 \right) \right]$ where

$X(t) = (X^1(t), X^2(t), X^3(t)), \quad X(0) = x \in \mathbb{R}^3$

$dX^1(t) = \mu X^1(t) \, dt + X^1(t) \sqrt{X^2(t)} \, dB^1(t)$

$dX^2(t) = \alpha (\theta - X^2(t)) \, dt + \beta \sqrt{X^2(t)} \left(\rho \, dB^1(t) + \sigma \, dB^2(t) \right)$

$dX^3(t) = X^1(t) \, dt$

$\rho^2 + \sigma^2 = 1, \, \rho \in (-1, 1)$ and the Feller condition:

$2\alpha \theta - \beta^2 > 0,$

which makes $X^2(t)$ strictly positive, is satisfied.
Derivation of the SCF (1/3)

Consider the following equivalent measure Q:

\[
\begin{align*}
g_1(t, X) &= -\frac{\sqrt{X^2(t)}}{2} - \frac{G}{\sqrt{X^2(t)}} \\
g_2(t, X) &= \frac{1}{\sigma} \left(H \sqrt{X^2(t)} + \frac{(I/\beta) + \rho G}{\sqrt{X^2(t)}} \right) \\
g(t, X) &= (g_1(t, X), g_2(t, X)), \quad B_Q(t) = \int_0^t g^\tau(s, X) \, ds + B(t) \\
L(t) &= \exp \left(-\int_0^t \sum_{j=1}^2 g^\tau_j(s, X) \, dB^j(s) - \frac{1}{2} \int_0^t |g^\tau(s, X)|^2 \, ds \right) \\
Q(A) &= E[1_A(L(T))]
\end{align*}
\]

where $G = \beta \rho / 4 - \mu$, $H = \rho / 2 - \alpha / \beta$, $I = \alpha \theta - \beta^2 / 4$ and τ is the 1st hitting time of $|g|$ to M.
Derivation of the SCF(2/3)

Proceed the calculation considering as if \(g^\tau = g \), the problem is transformed as follows:

\[
V_0^Q(y) = .^t \left(0, 0, y_1, C_1 y_2 + C_2 + C_3 / y_2 \right)
\]

\[
V_1(y) = .^t \left(y_1 \sqrt{y_2}, \beta \rho \sqrt{y_2}, 0, -g_1(t, y) \right)
\]

\[
V_2(y) = .^t \left(0, \beta \sigma \sqrt{y_2}, 0, -g_2(t, y) \right)
\]

and

\[
dX(t) = V^Q(X(t)) \, dt + \sum_{j=1}^{2} V_j(X(t)) \circ dB^j_Q(t)
\]

where \(C_1 = 1/8 + H^2/(2\sigma^2) \), \(C_2 = G/2 - \alpha/4 + H(I/\beta + \rho G)/\sigma^2 \), \(C_3 = (G^2 - I/2 + (I/\beta + \rho G)^2/\sigma^2)/2 \) and \(X^4(t) := \log L(t) \).
Derivation of the SCF(3/3)

At last we get:

\[
\exp\left(t\left(\frac{s}{2}V_0^Q + \sqrt{s}Z_1 V_1 + \sqrt{s}Z_2 V_2\right)\right) x
\]

\[
= \begin{pmatrix}
 x_1 \exp\left(\sqrt{s}Z_1 \left(\frac{Kt^2}{2} + \sqrt{x_2}t\right)\right) \\
 (Kt + \sqrt{x_2})^2 \\
 x_3 + \frac{sx_1}{2} e^{-\sqrt{s}Z_1(x_2/2K)} \int_{\sqrt{x_2}/K}^{t+\sqrt{x_2}/K} \exp\left(\sqrt{s}Z_1 \frac{K}{2} u^2\right) du \\
 x_4 + A(t, \sqrt{x_2}, 1/ \sqrt{x_2}, 1/(Kt + \sqrt{x_2})) + \log\left(\frac{Kt}{\sqrt{x_2}} + 1\right)
\end{pmatrix}
\]

where \(K = \frac{\beta \sqrt{x_2}}{2} (\rho Z_1 + \sigma Z_2) \) and \(A(u, v, w, z) \) is a polynomial of \(u, v, w \) and \(z \).
On the new SCFs to Heston model

- Two new SCFs to Asian derivatives under Heston model
- Another simulation method for CIR processes
- Need error estimation w.r.t M
- Work well in practical examples
Why it works well? (in spite of the cheating)

Rough calculation of $P(X^2(t) \leq 0)$: When $\theta = 0.09$, $\alpha = 2.0$, $\beta = 0.1$, $\mu = 0.05$, $\rho = -1/2$, $x_2 = 0.09$ and $T = 1$,

$$\text{Var}(X^2(1)) = 0.25 \times 10^{-2} \quad \text{and} \quad \sqrt{x_2}/\text{Var}(X^2(1)) = 6.0.$$

Then

$$P(X^2(T) \leq 0) = \frac{1}{\sqrt{2\pi}} \int_{6.0}^{\infty} e^{-u^2/2} \, du \approx 2.2 \times 10^{-17}$$
Both approaches are necessary because:

- PDE approach works only when
 - L is elliptic,
 - dimension is small.
- Simulation is the last resort but (people believes) very time consuming.

This presentation focuses on “Simulation.”