Google maps and improper Poisson line processes

Oxford Stochastic Analysis Seminar Series

Wilfrid Kendall
(joint with David Aldous, work in progress)

w.s.kendall@warwick.ac.uk

19th November 2012
Google
Scale-invariant Random Spatial Networks

Aldous (2012)

- **Input**: set of nodes x_1, \ldots, x_n;
Scale-invariant Random Spatial Networks

Aldous (2012)

- **Input**: set of nodes x_1, \ldots, x_n;
- **Output**: random network $N(x_1, \ldots, x_n)$ connecting nodes.
Scale-invariant Random Spatial Networks

Aldous (2012)

- **Input:** set of nodes x_1, \ldots, x_n;
- **Output:** random network $N(x_1, \ldots, x_n)$ connecting nodes.

1. **Scale-invariance:**
 \[
 \mathcal{L} (N(\lambda x_1, \ldots, \lambda x_n)) = \mathcal{L} (\lambda N(x_1, \ldots, x_n))
 \]
 for each Euclidean similarity λ.
Scale-invariant Random Spatial Networks

Aldous (2012)

- **Input:** set of nodes x_1, \ldots, x_n;
- **Output:** random network $N(x_1, \ldots, x_n)$ connecting nodes.

1. **Scale-invariance:** $\mathcal{L}(N(\lambda x_1, \ldots, \lambda x_n)) = \mathcal{L}(\lambda N(x_1, \ldots, x_n))$ for each Euclidean similarity λ.

2. Let D_1 be length of fastest route between two points at unit distance apart. We want $\mathbb{E}[D_1] < \infty$.
Scale-invariant Random Spatial Networks

Aldous (2012)

- **Input:** set of nodes x_1, \ldots, x_n;
- **Output:** random network $N(x_1, \ldots, x_n)$ connecting nodes.

1. **Scale-invariance:** $\mathcal{L}(N(\lambda x_1, \ldots, \lambda x_n)) = \mathcal{L}(\lambda N(x_1, \ldots, x_n))$ for each Euclidean similarity λ.

2. Let D_1 be length of fastest route between two points at unit distance apart. We want $\mathbb{E}[D_1] < \infty$.

3. Some condition like, consider network derived by connecting all points of unit intensity Poisson point process. Average length per unit area of resulting “fastest route” network should be finite.
Models for SIRSN

SIRSN axioms have many interesting consequences. Models need to be hierarchical in some sense (fast versus slow).

- Hierarchical binary model (randomized direction and location);
Models for SIRSN

SIRSN axioms have many interesting consequences. Models need to be hierarchical in some sense (fast versus slow).

- Hierarchical binary model (randomized direction and location);
- Dynamic proximity graph model;
Models for SIRSN

SIRSN axioms have many interesting consequences. Models need to be hierarchical in some sense (fast versus slow).

- Hierarchical binary model (randomized direction and location);
- Dynamic proximity graph model;
- Improper Poisson line process.
Antecedents

Frustrated optimization for Roman roads.
Antecedents

Frustrated optimization for Roman roads.

[Map of Roman roads in Britain] [Statue of a Roman emperor]
Improving a network

- Network connecting N cities in rectangle side \sqrt{N}.
Improving a network

- Network connecting N cities in rectangle side \sqrt{N}.

A Measure efficiency by minimizing connecting stuff? (Steiner tree)
Improving a network

Network connecting N cities in rectangle side \sqrt{N}.

A Measure efficiency by minimizing connecting stuff? (Steiner tree)

B Measure efficiency by average excess of connection distance over Euclidean? (Complete planar graph)
Improving a network

- Network connecting N cities in rectangle side \sqrt{N}.

A Measure efficiency by minimizing connecting stuff? (Steiner tree)

B Measure efficiency by average excess of connection distance over Euclidean? (Complete planar graph)

Aldous and WSK (2008): start with Steiner tree:
Improving a network

- Network connecting N cities in rectangle side \sqrt{N}.

A Measure efficiency by minimizing connecting stuff? (Steiner tree)

B Measure efficiency by average excess of connection distance over Euclidean? (Complete planar graph)

- Aldous and WSK (2008): start with Steiner tree:
 - Add sparse set of random lines;
Improving a network

- Network connecting N cities in rectangle side \sqrt{N}.

A Measure efficiency by minimizing connecting stuff? (Steiner tree)

B Measure efficiency by average excess of connection distance over Euclidean? (Complete planar graph)

- Aldous and WSK (2008): start with Steiner tree:
 - Add sparse set of random lines;
 - Add sparse rectilinear grid to move between lines and tree;
Improving a network

Network connecting N cities in rectangle side \sqrt{N}.

A Measure efficiency by minimizing connecting stuff? (Steiner tree)

B Measure efficiency by average excess of connection distance over Euclidean? (Complete planar graph)

Aldous and WSK (2008): start with Steiner tree:
- Add sparse set of random lines;
- Add sparse rectilinear grid to move between lines and tree;
- Add some box structures to avoid hotspots.
Improving a network

- Network connecting N cities in rectangle side \sqrt{N}.

A Measure efficiency by minimizing connecting stuff? (Steiner tree)

B Measure efficiency by average excess of connection distance over Euclidean? (Complete planar graph)

- Aldous and WSK (2008): start with Steiner tree:
 - Add sparse set of random lines;
 - Add sparse rectilinear grid to move between lines and tree;
 - Add some box structures to avoid hotspots.

- Resulting network (large N) is economical with connection stuff, but its average excess is only logarithmic in N.

Debunks a “natural” statistic for network efficiency. (But see Aldous and Shun 2010.)
Improving a network

- Network connecting N cities in rectangle side \sqrt{N}.

A Measure efficiency by minimizing connecting stuff? (Steiner tree)

B Measure efficiency by average excess of connection distance over Euclidean? (Complete planar graph)

- Aldous and WSK (2008): start with Steiner tree:
 - Add sparse set of random lines;
 - Add sparse rectilinear grid to move between lines and tree;
 - Add some box structures to avoid hotspots.

- Resulting network (large N) is economical with connection stuff, but its average excess is only logarithmic in N.

- Debunks a “natural” statistic for network efficiency.
Improving a network

- Network connecting N cities in rectangle side \sqrt{N}.

A Measure efficiency by minimizing connecting stuff? (Steiner tree)

B Measure efficiency by average excess of connection distance over Euclidean? (Complete planar graph)

- Aldous and WSK (2008): start with Steiner tree:
 - Add sparse set of random lines;
 - Add sparse rectilinear grid to move between lines and tree;
 - Add some box structures to avoid hotspots.

- Resulting network (large N) is economical with connection stuff, but its average excess is only logarithmic in N.

- Debunks a “natural” statistic for network efficiency.
 (But see Aldous and Shun 2010.)
Introducing Line Processes
Georges-Louis Leclerc, Comte de Buffon
(7 September, 1707 – 16 April, 1788)

- Calculate π by dropping a needle randomly on a ruled plane and counting mean proportion of hits,
Georges-Louis Leclerc, Comte de Buffon
(7 September, 1707 – 16 April, 1788)

- Calculate π by dropping a needle randomly on a ruled plane and counting mean proportion of hits, or (dually)
Calculate π by dropping a needle randomly on a ruled plane and counting mean proportion of hits, or (dually)

compute length of regularizable curve by counting mean number of hits by unit-intensity invariant Poisson line process (Steinhaus).
Random Line Processes (I)

• How to build a random line process on the plane?

Represent (undirected) lines \(\ell \) by points \((r, \theta)\) on a cylinder (actually a punctured projective plane). Here \(-\infty < r < \infty\) while \(0 \leq \theta < \pi\).

Invariant measure is \(\frac{1}{2} dr d\theta \).

Poisson point process on cylinder yields Poisson line process.

Mean number of lines hitting unit segment = 1.
Random Line Processes (I)

- How to build a random line process on the plane?
- Represent (undirected) lines ℓ by points (r, θ) on a cylinder (actually a punctured projective plane).
Random Line Processes (I)

- How to build a random line process on the plane?
- Represent (undirected) lines ℓ by points (r, θ) on a cylinder (actually a punctured projective plane).

Here $-\infty < r < \infty$ while $0 \leq \theta < \pi$.
Random Line Processes (I)

- How to build a random line process on the plane?
- Represent (undirected) lines ℓ by points (r, θ) on a cylinder (actually a punctured projective plane).

Here $-\infty < r < \infty$ while $0 \leq \theta < \pi$.
- Invariant measure is $\frac{1}{2} \, dr \, d\theta$.
Random Line Processes (I)

- How to build a random line process on the plane?
- Represent (undirected) lines ℓ by points (r, θ) on a cylinder (actually a punctured projective plane).

Here $-\infty < r < \infty$ while $0 \leq \theta < \pi$.

- Invariant measure is $\frac{1}{2} \, dr \, d\theta$.
- Poisson point process on cylinder yields Poisson line process.
Random Line Processes (I)

- How to build a random line process on the plane?
- Represent (undirected) lines ℓ by points (r, θ) on a cylinder (actually a punctured projective plane).

Here $-\infty < r < \infty$ while $0 \leq \theta < \pi$.

- Invariant measure is $\frac{1}{2} \, dr \, d\theta$.
- Poisson point process on cylinder yields Poisson line process.

Mean number of lines hitting unit segment $= 1$.
Random Line Processes (II)

- Variant parametrization:
Random Line Processes (II)

Variant parametrization:

\[-\infty < p < \infty \text{ while } 0 \leq \theta < \pi. \]

\[\text{Invariant measure now } \frac{1}{2} \sin \theta \, dp \, d\theta. \]
Random Line Processes (II)

- Variant parametrization:

\[-\infty < p < \infty \text{ while } 0 \leq \theta < \pi. \]
Variant parametrization:

Again $-\infty < p < \infty$ while $0 \leq \theta < \pi$.

Invariant measure now $\frac{1}{2} \sin \theta \, dp \, d\theta$.
Random Line Processes (III)

Poisson line processes in \mathbb{R}^d:

$$\text{Invariant measure now } c \, d\, d\, x \times \nu \, d(\, d\, \varpi).$$

Coordinate x is "twisted" by ϖ: measure theory doesn't see this.

Variant parametrization replaces x by p, intersection of ℓ with reference hyperplane. Invariant measure now $c \, d\sin \theta \, d\, p \times \nu \, d\, p^{-1}(\, d\, \varpi).$
Random Line Processes (III)

Poisson line processes in \mathbb{R}^d:

- Parametrize by ϖ “direction” of (undirected) line (point on hemisphere),
Random Line Processes (III)

Poisson line processes in \(\mathbb{R}^d \):

- Parametrize by \(\varpi \) “direction” of (undirected) line (point on hemisphere),
 and \(x \) location on perpendicular hyperplane.
Random Line Processes (III)

Poisson line processes in \(\mathbb{R}^d \):

- Parametrize by \(\varpi \) “direction” of (undirected) line (point on hemisphere), and \(x \) location on perpendicular hyperplane.
- Invariant measure now \(c_d \, dx \times \nu_d(d \varpi) \).
Random Line Processes (III)

Poisson line processes in \mathbb{R}^d:

- Parametrize by ϖ “direction” of (undirected) line (point on hemisphere), and x location on perpendicular hyperplane.
- Invariant measure now $c_d \, d\, x \times \nu_d(d\, \varpi)$.

Coordinate x is “twisted” by ϖ: measure theory doesn’t see this.
Random Line Processes (III)

Poisson line processes in \mathbb{R}^d:

- Parametrize by ϖ “direction” of (undirected) line (point on hemisphere), and x location on perpendicular hyperplane.
- Invariant measure now $c_d \, dx \times \nu_d (d \varpi)$.
 Coordinate x is “twisted” by ϖ: measure theory doesn’t see this.
- Variant parametrization replaces x by p, intersection of ℓ with reference hyperplane.
Poisson line processes in \mathbb{R}^d:

- Parametrize by ϖ “direction” of (undirected) line (point on hemisphere), and x location on perpendicular hyperplane.
- Invariant measure now $c_d \, d\, x \times \nu_d(d\, \varpi)$.
 Coordinate x is “twisted” by ϖ: measure theory doesn’t see this.

- Variant parametrization replaces x by p, intersection of ℓ with reference hyperplane.
 Invariant measure now $c_d \sin \theta \, d\, p \times \nu_{d-1}(d\, \varpi)$.
Random Line Processes (IV)

Improper Poisson line process:
- each line marked with positive speed-limit ν;
Random Line Processes (IV)

Improper Poisson line process:

- each line marked with positive speed-limit ν;
- representing space is now parametrized by ν, r, θ (more generally, in d dimensions, ν, x, ϖ);
Random Line Processes (IV)

Improper Poisson line process:

- each line marked with positive speed-limit v;
- representing space is now parametrized by v, r, θ (more generally, in d dimensions, v, x, ω);
- to achieve scale-invariance, invariant measure is $\frac{1}{2} v^{-\gamma} d v d r d \theta$ for positive γ (more generally, $c_d v^{-\gamma} d v d r \times \nu_{d-1}(d \omega)$).
Random Line Processes (IV)

Improper Poisson line process:
- each line marked with positive speed-limit v;
- representing space is now parametrized by v, r, θ (more generally, in d dimensions, v, x, ϖ);
- to achieve scale-invariance, invariant measure is $\frac{1}{2} v^{-\gamma} d v \, d r \, d \theta$ for positive γ (more generally, $c_d v^{-\gamma} d v \, d r \times \nu_{d-1}(d \varpi)$).
- The line process is **dense** throughout the plane (respectively, \mathbb{R}^d), but lines of speed exceeding threshold v_0 form proper Poisson line process if $\gamma > 1$ ($\gamma > d$).
Random Line Processes (IV)

Improper Poisson line process:

- each line marked with positive speed-limit ν;
- representing space is now parametrized by ν, r, θ (more generally, in d dimensions, ν, x, ϖ);
- to achieve scale-invariance, invariant measure is $\frac{1}{2} \nu^{-\gamma} \, d\nu \, dr \, d\theta$ for positive γ (more generally, $c_d \nu^{-\gamma} \, d\nu \, dr \times \nu_{d-1} (d\varpi)$).
- The line process is dense throughout the plane (respectively, \mathbb{R}^d), but lines of speed exceeding threshold ν_0 form proper Poisson line process if $\gamma > 1$ ($\gamma > d$).

Use lines to go from A to B as fast as legally possible.
Random Line Processes (IV)

Improper Poisson line process:

- each line marked with positive speed-limit ν;
- representing space is now parametrized by ν, r, θ (more generally, in d dimensions, ν, x, ϖ);
- to achieve scale-invariance, invariant measure is $\frac{1}{2} \nu^{-\gamma} \, d\nu \, dr \, d\theta$ for positive γ (more generally, $c_d \nu^{-\gamma} \, d\nu \, dr \times \nu_{d-1}(d\varpi)$).
- The line process is dense throughout the plane (respectively, \mathbb{R}^d), but lines of speed exceeding threshold ν_0 form proper Poisson line process if $\gamma > 1$ ($\gamma > d$).

Use lines to go from A to B as fast as legally possible. For which γ might we get a decent network?
What is a path? (I)

Seek shortest-time paths (“temporal geodesics” or Π-geodesics) built using line process Π.
What is a path? (I)

Seek shortest-time paths (“temporal geodesics” or Π-geodesics) built using line process Π.

Require $γ > d$, or fast lines will go everywhere.
What is a path? (I)

Seek shortest-time paths (“temporal geodesics” or Π-geodesics) built using line process Π.
Require $\gamma > d$, or fast lines will go everywhere.

- Introduce maximum speed limit, upper-semi-continuous $V : \mathbb{R}^d \to [0, \infty)$.

Consequence: Π-geodesics exist if Π-paths exist.
What is a path? (I)

Seek shortest-time paths (“temporal geodesics” or \(\Pi \)-geodesics) built using line process \(\Pi \).

Require \(\gamma > d \), or fast lines will go everywhere.

- Introduce maximum speed limit, upper-semi-continuous \(V : \mathbb{R}^d \rightarrow [0, \infty) \).

- A \(\Pi \)-path is locally Lipschitz, integrates measurable orientation field determined by \(\Pi \), obeys speed limit.
What is a path? (I)

Seek shortest-time paths ("temporal geodesics" or Π-geodesics) built using line process Π. Require $\gamma > d$, or fast lines will go everywhere.

- Introduce maximum speed limit, upper-semi-continuous $V : \mathbb{R}^d \to [0, \infty)$.
- A Π-path is locally Lipschitz, integrates measurable orientation field determined by Π, obeys speed limit.
- If $\gamma > d$ then:
What is a path? (I)

Seek shortest-time paths ("temporal geodesics" or Π-geodesics) built using line process Π.

Require \(\gamma > d \), or fast lines will go everywhere.

- Introduce maximum speed limit, upper-semi-continuous \(V : \mathbb{R}^d \to [0, \infty) \).
- A Π-path is locally Lipschitz, integrates measurable orientation field determined by Π, obeys speed limit.
- If \(\gamma > d \) then:
 - there is an \textit{a priori} random bound on distance travelled by Π-path in fixed time;
What is a path? (I)

Seek shortest-time paths (“temporal geodesics” or Π-geodesics) built using line process Π. Require $\gamma > d$, or fast lines will go everywhere.

- Introduce maximum speed limit, upper-semi-continuous $V : \mathbb{R}^d \to [0, \infty)$.
- A Π-path is locally Lipschitz, integrates measurable orientation field determined by Π, obeys speed limit.
- If $\gamma > d$ then:
 - there is an a priori random bound on distance travelled by Π-path in fixed time;
 - space of paths up to time T is closed, weakly closed in Sobolev space $L^{1,2}([0, T) \to \mathbb{R}^d)$,
What is a path? (I)

Seek shortest-time paths ("temporal geodesics" or \(\Pi\)-geodesics) built using line process \(\Pi\).
Require \(\gamma > d\), or fast lines will go everywhere.

- Introduce **maximum speed limit**, upper-semi-continuous \(V : \mathbb{R}^d \to [0, \infty)\).
- A \(\Pi\)-path is locally Lipschitz, integrates measurable orientation field determined by \(\Pi\), obeys speed limit.
- If \(\gamma > d\) then:
 - there is an *a priori* random bound on distance travelled by \(\Pi\)-path in fixed time;
 - space of paths up to time \(T\) is closed, weakly closed in Sobolev space \(L^{1,2}([0, T) \to \mathbb{R}^d)\);
 - paths up to time \(T\), beginning in a compact set, together form a weakly compact set.
What is a path? (I)

Seek shortest-time paths ("temporal geodesics" or Π-geodesics) built using line process Π. Require $\gamma > d$, or fast lines will go everywhere.

- Introduce maximum speed limit, upper-semi-continuous $V : \mathbb{R}^d \to [0, \infty)$.
- A Π-path is locally Lipschitz, integrates measurable orientation field determined by Π, obeys speed limit.
- If $\gamma > d$ then:
 - there is an *a priori* random bound on distance travelled by Π-path in fixed time;
 - space of paths up to time T is closed, weakly closed in Sobolev space $L^{1,2}([0, T) \to \mathbb{R}^d)$;
 - paths up to time T, beginning in a compact set, together form a weakly compact set.

Consequence: Π-geodesics exist if Π-paths exist.
What is a path? (II)

Suppose one wishes to connect two points ξ_1 and ξ_2 in \mathbb{R}^d by a Π-path. Suppose $\gamma > d$ (turns out to be essential).
What is a path? (II)

Suppose one wishes to connect two points ξ_1 and ξ_2 in \mathbb{R}^d by a Π-path. Suppose $\gamma > d$ (turns out to be essential).

- Construct small balls around ξ_1 and ξ_2;
What is a path? (II)

Suppose one wishes to connect two points ξ_1 and ξ_2 in \mathbb{R}^d by a Π-path. Suppose $\gamma > d$ (turns out to be essential).

- Construct small balls around ξ_1 and ξ_2;
- Connect balls by fastest line ℓ intersecting both balls;
What is a path? (II)

Suppose one wishes to connect two points ξ_1 and ξ_2 in \mathbb{R}^d by a Π-path. Suppose $\gamma > d$ (turns out to be essential).

- Construct small balls around ξ_1 and ξ_2;
- Connect balls by fastest line ℓ intersecting both balls;
- Construct daughter nodes on ℓ closest to ξ_1 and ξ_2;
What is a path? (II)

Suppose one wishes to connect two points ξ_1 and ξ_2 in \mathbb{R}^d by a Π-path. Suppose $\gamma > d$ (turns out to be essential).

- Construct small balls around ξ_1 and ξ_2;
- Connect balls by fastest line ℓ intersecting both balls;
- Construct daughter nodes on ℓ closest to ξ_1 and ξ_2;
- Recurse.

Borel-Cantelli, et cetera: establish almost sure existence of resulting path. This yields a binary tree representation of the path. Note this is unavoidable if $d > 2!$

A similar but more complicated argument almost surely allows simultaneous construction of paths between all possible pairs ξ_1 and ξ_2 in \mathbb{R}^d.

Exercise: Visualize such paths in case $d = 3$.
What is a path? (II)

Suppose one wishes to connect two points ξ_1 and ξ_2 in \mathbb{R}^d by a Π-path. Suppose $\gamma > d$ (turns out to be essential).

- Construct small balls around ξ_1 and ξ_2;
- Connect balls by fastest line ℓ intersecting both balls;
- Construct daughter nodes on ℓ closest to ξ_1 and ξ_2;
- Recurse.
- Borel-Cantelli, *et cetera*: establish almost sure existence of resulting path.
What is a path? (II)

Suppose one wishes to connect two points ξ_1 and ξ_2 in \mathbb{R}^d by a Π-path. Suppose $\gamma > d$ (turns out to be essential).

- Construct small balls around ξ_1 and ξ_2;
- Connect balls by fastest line ℓ intersecting both balls;
- Construct daughter nodes on ℓ closest to ξ_1 and ξ_2;
- Recurse.

- Borel-Cantelli, *et cetera*: establish almost sure existence of resulting path.

This yields a binary tree representation of the path. Note this is *unavoidable* if $d > 2$!
What is a path? (II)

Suppose one wishes to connect two points ξ_1 and ξ_2 in \mathbb{R}^d by a Π-path. Suppose $\gamma > d$ (turns out to be essential).

- Construct small balls around ξ_1 and ξ_2;
- Connect balls by fastest line ℓ intersecting both balls;
- Construct daughter nodes on ℓ closest to ξ_1 and ξ_2;
- Recurse.

Borel-Cantelli, et cetera: establish almost sure existence of resulting path.

This yields a binary tree representation of the path. Note this is unavoidable if $d > 2$!

A similar but more complicated argument almost surely allows simultaneous construction of paths between all possible pairs ξ_1 and ξ_2 in \mathbb{R}^d.
What is a path? (II)

Suppose one wishes to connect two points ξ_1 and ξ_2 in \mathbb{R}^d by a Π-path. Suppose $\gamma > d$ (turns out to be essential).

- Construct small balls around ξ_1 and ξ_2;
- Connect balls by fastest line ℓ intersecting both balls;
- Construct daughter nodes on ℓ closest to ξ_1 and ξ_2;
- Recurse.

Borel-Cantelli, *et cetera*: establish almost sure existence of resulting path.

This yields a binary tree representation of the path. Note this is unavoidable if $d > 2$!

A similar but more complicated argument almost surely allows simultaneous construction of paths between all possible pairs ξ_1 and ξ_2 in \mathbb{R}^d.

Exercise: Visualize such paths in case $d = 3$.
Simulations (approximate!) of a typical set of routes
Simulations (approximate!) of a typical set of routes
Simulations (approximate!) of a typical set of routes
Are \(\Pi \)-geodesics unique? (I)

Suppose now \(d = 2 \) and \(\gamma > 2 \), and we fix \(\xi_1 \) and \(\xi_2 \in \mathbb{R}^2 \). If \(\Pi \) is to generate a network between a finite set of points, then we need to know the \(\Pi \)-geodesic between \(\xi_1 \) and \(\xi_2 \) is almost surely unique.
Are Π-geodesics unique? (I)

Suppose now $d = 2$ and $\gamma > 2$, and we fix ξ_1 and $\xi_2 \in \mathbb{R}^2$. If Π is to generate a network between a finite set of points, then we need to know the Π-geodesic between ξ_1 and ξ_2 is almost surely unique.

- **Theorem**: All non-singleton intersections of Π-geodesic with lines ℓ of Π are “line meets line”.
Are Π-geodesics unique? (I)

Suppose now $d = 2$ and $\gamma > 2$, and we fix ξ_1 and $\xi_2 \in \mathbb{R}^2$. If Π is to generate a network between a finite set of points, then we need to know the Π-geodesic between ξ_1 and ξ_2 is almost surely unique.

- **Theorem:** All non-singleton intersections of Π-geodesic with lines ℓ of Π are “line meets line”.
 - First, reduce to case of ℓ being fastest line in region, with speed w.
Are \(\Pi\)-geodesics unique? (I)

Suppose now \(d = 2\) and \(\gamma > 2\), and we fix \(\xi_1\) and \(\xi_2 \in \mathbb{R}^2\). If \(\Pi\) is to generate a network between a finite set of points, then we need to know the \(\Pi\)-geodesic between \(\xi_1\) and \(\xi_2\) is almost surely unique.

Theorem: All non-singleton intersections of \(\Pi\)-geodesic with lines \(\ell\) of \(\Pi\) are “line meets line”.

- First, reduce to case of \(\ell\) being fastest line in region, with speed \(w\).
- Now argue by replacing speed \(v\) by

\[
\text{“cost”} = \frac{\csc \theta}{v} - \frac{\cot \theta}{w}.
\]

where \(\theta\) is angle of line with \(\ell\).
Are Π-geodesics unique? (I)

Suppose now $d = 2$ and $\gamma > 2$, and we fix ξ_1 and $\xi_2 \in \mathbb{R}^2$. If Π is to generate a network between a finite set of points, then we need to know the Π-geodesic between ξ_1 and ξ_2 is almost surely unique.

Theorem: All non-singleton intersections of Π-geodesic with lines ℓ of Π are “line meets line”.

- First, reduce to case of ℓ being fastest line in region, with speed w.
- Now argue by replacing speed v by

\[
\text{“cost”} = \frac{\csc \theta}{v} - \frac{\cot \theta}{w}.
\]

where θ is angle of line with ℓ.

- Argue that Π-geodesic hits ℓ using line of finite cost.
Are Π-geodesics unique? (II)

So Π-geodesics between ξ_1 and ξ_2 are made up of countable collection of intervals of lines of Π.
Are Π-geodesics unique? (II)

So Π-geodesics between ξ_1 and ξ_2 are made up of countable collection of intervals of lines of Π.

Fix a given ℓ from Π, and consider the set S of such intervals lying in ℓ.
Are Π-geodesics unique? (II)

So Π-geodesics between ξ_1 and ξ_2 are made up of countable collection of intervals of lines of Π.

- Fix a given ℓ from Π, and consider the set S of such intervals lying in ℓ.
- Consider two different finite collections S_1 and S_2 of S, each composed of non-overlapping intervals.

Theorem: given ξ_1 and ξ_2, almost surely there is just one Π-geodesic between them.
Are Π-geodesics unique? (II)

So Π-geodesics between ξ_1 and ξ_2 are made up of countable collection of intervals of lines of Π.

- Fix a given ℓ from Π, and consider the set S of such intervals lying in ℓ.
 - Consider two different finite collections S_1 and S_2 of S, each composed of non-overlapping intervals.
 - Probability density argument: the total lengths of S_1 and S_2 have a joint density.
Are Π-geodesics unique? (II)

So Π-geodesics between ξ_1 and ξ_2 are made up of countable collection of intervals of lines of Π.

- Fix a given ℓ from Π, and consider the set S of such intervals lying in ℓ.
 - Consider two different finite collections S_1 and S_2 of S, each composed of non-overlapping intervals.
 - Probability density argument: the total lengths of S_1 and S_2 have a joint density.
 - Conditioning on time spent off ℓ, almost surely two Π-paths using S_1 and S_2 respectively must have different total travel times.

But we can reconstruct the Π-geodesic uniquely from the collections of intervals of each line ℓ in Π.

Theorem: given ξ_1 and ξ_2, almost surely there is just one Π-geodesic between them.
Are Π-geodesics unique? (II)

So Π-geodesics between ξ_1 and ξ_2 are made up of countable collection of intervals of lines of Π.

- Fix a given ℓ from Π, and consider the set S of such intervals lying in ℓ.
 - Consider two different finite collections S_1 and S_2 of S, each composed of non-overlapping intervals.
 - Probability density argument: the total lengths of S_1 and S_2 have a joint density.
 - Conditioning on time spent off ℓ, almost surely two Π-paths using S_1 and S_2 respectively must have different total travel times.
 - Almost surely two Π-geodesics between ξ_1 and ξ_2 must use the same finite collection of non-overlapping intervals from each ℓ of Π.

But we can reconstruct the Π-geodesic uniquely from the collections of intervals of each line ℓ in Π.

Theorem: given ξ_1 and ξ_2, almost surely there is just one Π-geodesic between them.
Are Π-geodesics unique? (II)

So Π-geodesics between ξ_1 and ξ_2 are made up of countable collection of intervals of lines of Π.

- Fix a given ℓ from Π, and consider the set S of such intervals lying in ℓ.
 - Consider two different finite collections S_1 and S_2 of S, each composed of non-overlapping intervals.
 - Probability density argument: the total lengths of S_1 and S_2 have a joint density.
 - Conditioning on time spent off ℓ, almost surely two Π-paths using S_1 and S_2 respectively must have different total travel times.
 - Almost surely two Π-geodesics between ξ_1 and ξ_2 must use the same finite collection of non-overlapping intervals from each ℓ of Π.
 - But we can reconstruct the Π-geodesic uniquely from the collections of intervals of each line ℓ in Π.
Are Π-geodesics unique? (II)

So Π-geodesics between ξ_1 and ξ_2 are made up of countable collection of intervals of lines of Π.

- Fix a given ℓ from Π, and consider the set S of such intervals lying in ℓ.
 - Consider two different finite collections S_1 and S_2 of S, each composed of non-overlapping intervals.
 - Probability density argument: the total lengths of S_1 and S_2 have a joint density.
 - Conditioning on time spent off ℓ, almost surely two Π-paths using S_1 and S_2 respectively must have different total travel times.
 - Almost surely two Π-geodesics between ξ_1 and ξ_2 must use the same finite collection of non-overlapping intervals from each ℓ of Π.
 - But we can reconstruct the Π-geodesic uniquely from the collections of intervals of each line ℓ in Π.

- **Theorem:** given ξ_1 and ξ_2, almost surely there is just one Π-geodesic between them.
Do Π-geodesics have finite mean length?

Suppose again that $d = 2$ and $\gamma > 2$.
Do Π-geodesics have finite mean length?

Suppose again that $d = 2$ and $\gamma > 2$.

- Techniques for showing existence of Π-paths show finite mean of length of Π-geodesic lying in a fixed ball.
Do Π-geodesics have finite mean length?

Suppose again that $d = 2$ and $\gamma > 2$.

- Techniques for showing existence of Π-paths show finite mean of length of Π-geodesic *lying in a fixed ball*.

- Could fast geodesics generate long lengths outside balls? (Oxford → Cambridge by motorway *via* London? or *Edinburgh*? . . .)
Do Π-geodesics have finite mean length?

Suppose again that $d = 2$ and $\gamma > 2$.

- Techniques for showing existence of Π-paths show finite mean of length of Π-geodesic *lying in a fixed ball*.

- Could fast geodesics generate long lengths outside balls? (Oxford → Cambridge by motorway *via* London? or *Edinburgh*? . . .)

- Time spent by Π-geodesic can be bounded above by time spent on a circuit of a “racetrack” construction around ξ_1 and ξ_2 using fastest lines.
Do Π-geodesics have finite mean length?

Suppose again that $d = 2$ and $\gamma > 2$.

- Techniques for showing existence of Π-paths show finite mean of length of Π-geodesic *lying in a fixed ball*.
- Could fast geodesics generate long lengths outside balls? (Oxford \rightarrow Cambridge by motorway *via* London? or *Edinburgh*? . . .)
- Time spent by Π-geodesic can be bounded above by time spent on a circuit of a “racetrack” construction around ξ_1 and ξ_2 using fastest lines.
- We can upper-bound distance travelled outside a ball by using the “idealized path” construction employed above.
Do Π-geodesics have finite mean length?

Suppose again that $d = 2$ and $\gamma > 2$.

- Techniques for showing existence of Π-paths show finite mean of length of Π-geodesic *lying in a fixed ball*.

- Could fast geodesics generate long lengths outside balls? (Oxford \rightarrow Cambridge by motorway *via* London? or *Edinburgh*? . . .)

- Time spent by Π-geodesic can be bounded above by time spent on a circuit of a “racetrack” construction around ξ_1 and ξ_2 using fastest lines.

- We can upper-bound distance travelled outside a ball by using the “idealized path” construction employed above.

- The resulting perpetuity can be combined with the “racetrack” bound to establish finite mean length.
Conclusion

The improper line process construction gives a scale-invariant random spatial network for finite sets of points in the plane with $\gamma > 2$.
Conclusion

- The improper line process construction gives a scale-invariant random spatial network for finite sets of points in the plane with $\gamma > 2$.
- We even obtain scale-invariant random metric spaces in \mathbb{R}^d for $\gamma > d$ (but visualizing paths is . . . interesting).
Conclusion

- The improper line process construction gives a scale-invariant random spatial network for finite sets of points in the plane with $\gamma > 2$.
- We even obtain scale-invariant random metric spaces in \mathbb{R}^d for $\gamma > d$ (but visualizing paths is . . . interesting).
- Final property for SIRSN: *Average length per unit area of resulting “fastest route” network should be finite.* (Because Π-geodesics get re-used.)

Still needs proof. Various approaches, for example: Seek a construction of “quarantine cells” (geodesics go around, not across), of finite non-zero mean area. (Use Lévy couplings of *WSK 2011.*)
Conclusion

- The improper line process construction gives a scale-invariant random spatial network for finite sets of points in the plane with $\gamma > 2$.

- We even obtain scale-invariant random metric spaces in \mathbb{R}^d for $\gamma > d$ (but visualizing paths is . . . interesting).

- Final property for SIRSN: *Average length per unit area of resulting “fastest route” network should be finite.*
 (Because Π-geodesics get re-used.)
 Still needs proof. Various approaches, for example:
 Seek a construction of “quarantine cells” (geodesics go around, not across), of finite non-zero mean area. (Use Lévy couplings of *WSK 2011*.)

- Links to Brownian maps?
Conclusion

- The improper line process construction gives a scale-invariant random spatial network for finite sets of points in the plane with $\gamma > 2$.

- We even obtain scale-invariant random metric spaces in \mathbb{R}^d for $\gamma > d$ (but visualizing paths is . . . interesting).

- Final property for SIRSN: *Average length per unit area of resulting “fastest route” network should be finite.* (Because Π-geodesics get re-used.)

 Still needs proof. Various approaches, for example:

 Seek a construction of “quarantine cells” (geodesics go around, not across), of finite non-zero mean area. (Use Lévy couplings of WSK 2011.)

- Links to Brownian maps?

 Example: there is just one singly-infinite geodesic ray from each point.
Questions?

Lazzarini, M. (1901).
Un’applicazione del calcolo della probabilità alla ricerca esperimentale di un valore approssimato di π.
Periodico di Matematica 4, 49–68.

Steinhaus, H. (1930).
Zur Praxis der Rektifikation und zum Längenbegriff.
Sächsischen Akad. Wiss. Leipzig 82, 120–130.

Stochastic simulation in the nineteenth century.

WSK (2008).
Networks and Poisson line patterns: fluctuation asymptotics.
Oberwolfach Reports 5(4), 2670–2672.
WSK (2011, October).
Geodesics and flows in a Poissonian city.